Math, asked by NamrataLal8281, 1 year ago

A certain function f satisfies the equation f(x)+2*f(6-x) = x for all real numbers x. the value of f(1) is

Answers

Answered by BEJOICE
4

given \:  \: f(x) + 2f(6 - x) = x \\ put \:  \: x = 1 \\ f(1) + 2f(5) = 1  -  -  - (1)\\put \:  \: x = 5 \\ f(5) + 2f(1) = 5 -  -  - (2) \\ 2 \times (2) - (1) \:  \: gives \\ 4f(1) - f(1) = 5 \times 2 - 1 \\ 3f(1) = 9 \\ f(1) = 3
Answered by pinquancaro
7

Answer:

The value of f(1)=3.      

Step-by-step explanation:

Given : A certain function f satisfies the equation f(x)+2\times f(6-x)=x  for all real numbers x.

To find : The value of f(1) is?

Solution :

The given equation is f(x)+2\times f(6-x)=x

Put x=1,

f(1)+2\times f(6-1)=1

f(1)+2\times f(5)=1

f(1)=1-2\times f(5)

To find f(1) we have to find f(5),

So, Put x=5 in the equation,

f(5)+2\times f(6-5)=5

f(5)+2\times f(1)=5

f(5)=5-2\times f(1)

Put in f(1),

f(1)=1-2\times (5-2\times f(1))

f(1)=1-10+4\times f(1)

f(1)=-9+4\times f(1)

3f(1)=9

f(1)=\frac{9}{3}

f(1)=3

Therefore, The value of f(1)=3.

Similar questions