Math, asked by siddharthdullu6792, 1 year ago

A certain sum invested at 4% per annum compounded semi-annually amounts to ₹7803 at the end of the year. then the sum is

Answers

Answered by samratchatterjee305
96

Answer:

Step-by-step explanation:

Attachments:
Answered by Cricetus
9

Given:

Amount,

A = 7803

Invested semi-annually amounts,

= 4%

then,

R = \frac{1}{2}\times 4

  = 2 \ percent

n = 2

To find:

Sum = ?

Solution:

As we know,

⇒  A=P(1+\frac{R}{100})^n

On substituting the given values, we get

⇒  7803=P(1+\frac{2}{100})^2

⇒  7803=P(\frac{102}{100} )^2

⇒  7830=P\times \frac{10404}{10000}

⇒  7830\times 10000=10404P

⇒        78300000=10404P

⇒                   P=\frac{78300000}{10404}

⇒                   P=7,525.95

Thus the correct answer is "7,525.95"

Similar questions