Math, asked by Anonymous, 5 months ago

A challenge to all brainly stars and moderators...​

Attachments:

Answers

Answered by Anonymous
21

Question :

Find the value of :

\rm\lim{x\to1}\:\dfrac{\int\limits_{0}^{(x-1)^2}t\cos(t)dt}{(x-1)\sin(x-1)}

Formula's used

1)Leibnitz's Rule : Derivative of Definate integral

Let g be a continuous function on [a,b] and α(x) ,ß(x) are differentiable functions of x whose value lie in [a,b] , then

\sf\dfrac{d}{dx}\int\limits_{\alpha(x)}^{\beta(x)}g(t)=g[\beta(x)]\beta'(x)-g[\alpha(x)]\alpha'(x)

2) Chain rule:

Let y=f(t) and t=g(x) , then

\sf\dfrac{dy}{dx}=\dfrac{dy}{dt}\times\dfrac{dt}{dx}

3) L'hospital rule :

When a function is in 0/0 (or) ∞/∞ form then both the numerator and denominator of the function can be differentiated to evaluate the limit .

Solution :

We have;

\sf\lim{x\to1}\:\dfrac{\int\limits_{0}^{(x-1)^2}t\cos(t)dt}{(x-1)\sin(x-1)}

Clearly it is \sf\dfrac{0}{0} form

\sf\blue{So\:,we\:can\:solve\:it\:by\:l-hosptial\:rule}

Now , let's solve the problem

\sf\lim{x\to1}\:\dfrac{\int\limits_{0}^{(x-1)^2}t\cos(t)dt}{(x-1)\sin(x-1)}

by l-hosptial rule :

\sf\lim{x\to1}\:\dfrac{\frac{d(x-1)^2}{dx}\times(x-1)^2\cos(x-1)^2-0}{(x-1)\times\frac{d(\sin(x-1)}{dx}+\sin(x-1)\times\frac{d(x-1)}{dx}}

[Here, Numerator is differentiated by Leibnitz's Rule and denominator by chain rule ] then ,

\sf\lim{x\to1}\:\dfrac{2(x-1)(x-1)^2\cos(x-1)^2-0}{(x-1)\cos(x-1)+\sin(x-1)\times1}

\sf\lim{x\to1}\:\dfrac{2(x-1)(x-1)^2\cos(x-1)^2}{(x-1)\cos(x-1)+\sin(x-1)}

Again this limit , in the form of 0/0 , After Rearranging terms :

\sf\lim{x\to1}\:\dfrac{2(x-1)(x-1)^2\cos(x-1)^2}{(x-1)[\cos(x-1)+\frac{\sin(x-1)}{(x-1)}]}

\sf\lim{x\to1}\:\dfrac{2\cancel{(x-1)}(x-1)^2\cos(x-1)^2}{\cancel{(x-1)}[\cos(x-1)+\frac{\sin(x-1)}{(x-1)}]}

\sf\lim{x\to1}\:\dfrac{2(x-1)^2\cos(x-1)^2}{\cos(x-1)+\frac{\sin(x-1)}{(x-1)}}

\sf\green{We\:know\:that}

\sf\lim{x\to0}\dfrac{\sin\:x}{x}=1

Then ,

\sf\lim{x\to1}\:\dfrac{2(x-1)^2\cos(x-1)^2}{\cos(x-1)+\frac{\sin(x-1)}{(x-1)}}

put the limit value

\sf=\dfrac{2\times(1-1)^2\times\cos(1-1)^2}{\cos(1-1)+1}

\sf=\dfrac{2\times0\times\cos(0)^2}{\cos(0)+1}

\sf=\dfrac{0}{1+1}

\sf=\dfrac{0}{2}

\sf=0

Therefore,

\tt\lim{x\to1}\:\dfrac{\int\limits_{0}^{(x-1)^2}t\cos(t)dt}{(x-1)\sin(x-1)}=0


Vamprixussa: Perfect ♥
Anonymous: Thanks
Anonymous: Amazing :claps:
Anonymous: Thank you
Similar questions