Physics, asked by athihagati, 10 months ago

A charge - is uniformly distributed over a non-
conducting semi-circular rod of radius R. The potential
at the centre is:​

Answers

Answered by nirman95
16

Answer:

Given:

Charge q has been distributed over a semi-circular rod of radius of R .

To find:

Potential at the centre of the semi-circle.

Calculation:

We shall use Integration to solve this kind of questions. Let a small portion of rod give dV amount of potential at centre.

dV =  \dfrac{1}{4\pi \epsilon_{0}}   \bigg \{\dfrac{dq}{r}  \bigg \}

Now, integration for the whole rod , we can say :

 =  >  \displaystyle \int dV =  \dfrac{1}{4\pi \epsilon_{0}}   \bigg \{  \int  \dfrac{dq}{r}  \bigg \}

Trying to experience charge in terms of circumference , we get :

 =  >  \displaystyle \int dV =  \dfrac{1}{4\pi \epsilon_{0}}   \bigg \{  \int  \dfrac{ \frac{q(dr)}{\pi r} }{r}  \bigg \}

 \displaystyle =  > V =  \dfrac{q}{4 {\pi}^{2} \epsilon_{0} }  \int \frac{dr}{ {r}^{2} }

 \displaystyle =  > V =  \dfrac{q}{4 {\pi}^{2} \epsilon_{0} } \times  \dfrac{1}{r}

 \displaystyle =  > V =  \dfrac{q}{4 {\pi}^{2} \epsilon_{0}r }

So final answer :

 \boxed{ \red{ \huge{ \bold{ V =  \dfrac{q}{4 {\pi}^{2} \epsilon_{0}r } }}}}

Answered by Saby123
5

 \tt{\huge{\pink{Hello!!! }}}

Refer to the above attachment...

Now Charge At Point O :

 \tt{ \purple { \leadsto {dq \: = \dfrac{1}{4 \: \pi \: \e_0 } \times \dfrac{dq}{r} }}}

Total Potential At O :

 \tt{ \purple{ \leadsto{ = \dfrac{1}{4 \: \pi \: e0} \\ \\ \displaystyle \int\limits_{0}^{ - q} \:dq \: = \tt{ \purple{ \leadsto{dq \: = \dfrac{ - 1}{4 \: \pi \: e0} . \dfrac{Q}{r} }}} }}}

Attachments:
Similar questions