Physics, asked by pooja197521, 5 months ago

A charge is uniformly distributed over a ring of radius a. Obtain an expression for the electric field at its centre . Hence show that for large distances it behaves like a point charge.​

Answers

Answered by shadowsabers03
13

Consider a ring of radius \sf{a} uniformly distributed by a charge \sf{q} over it. We find the electric field due to the ring at a point P at a distance \sf{r} from the center of the ring along the axial line.

The ring is placed in YZ plane as in fig. 1. We consider an element of length \sf{dl } which subtends an angle \sf{d\theta} at the center of the ring and carries a charge \sf{dq.}

Since the charge is uniformly distributed over the ring,

\sf{\longrightarrow\dfrac{dq}{dl}=\dfrac{q}{2\pi a}}

\sf{\longrightarrow\dfrac{dq}{a\,d\theta}=\dfrac{q}{2\pi a}}

\sf{\longrightarrow dq=\dfrac{q}{2\pi}\ d\theta\quad\quad\dots(1)}

Also the radius vector \vec{\sf{a}} is given by,

\longrightarrow\vec{\sf{a}}=\sf{a\sin\theta\,\hat j-a\cos\theta\,\hat k}

in fig. 2, the vector \vec{\sf{r}} is along X axis and can be given by,

  • \vec{\sf{r}}=\sf{r\,\hat i}

The vector \vec{\sf{s}} is the vector drawn from the element to the point P and is related to \vec{\sf{a}} and \vec{\sf{r}} by triangle law of vector addition as,

\longrightarrow\vec{\sf{r}}=\vec{\sf{a}}+\vec{\sf{s}}

\longrightarrow\vec{\sf{s}}=\vec{\sf{r}}-\vec{\sf{a}}

\longrightarrow\vec{\sf{s}}=\sf{r\,\hat i-a\sin\theta\,\hat j+a\cos\theta\,\hat k}

Since OPQ is a right triangle, right angled at O,

  • \sf{s=\left(r^2+a^2\right)^{\frac{1}{2}}\quad\quad\dots(2)}

Then unit vector along \vec{\sf{s}} will be,

\longrightarrow\mathsf{\hat s}=\dfrac{\vec{\mathsf{s}}}{\mathsf{s}}

\longrightarrow\sf{\hat s=\dfrac{r\,\hat i-a\sin\theta\,\hat j+a\cos\theta\,\hat k}{s}}

Here \vec{\sf{dE}} is the electric field at the point P due to the element and is directed along \vec{\sf{s}}. So, \sf{\left(k=\dfrac{1}{4\pi\epsilon_0}\right)}

\longrightarrow\vec{\sf{dE}}=\sf{\dfrac{k\ dq}{s^2}\,\hat s}

\longrightarrow\vec{\sf{dE}}=\sf{\dfrac{k\ dq}{s^2}\cdot\dfrac{r\,\hat i-a\sin\theta\,\hat j+a\cos\theta\,\hat k}{s}}

\longrightarrow\vec{\sf{dE}}=\sf{\dfrac{k\ dq}{s^3}\left(r\,\hat i-a\sin\theta\,\hat j+a\cos\theta\,\hat k\right)}

From (1),

\longrightarrow\vec{\sf{dE}}=\sf{\dfrac{kq\ d\theta}{2\pi s^3}\left(r\,\hat i-a\sin\theta\,\hat j+a\cos\theta\,\hat k\right)}

\longrightarrow\vec{\sf{dE}}=\sf{\dfrac{kq}{2\pi s^3}\left(r\,d\theta\,\hat i-a\sin\theta\,d\theta\,\hat j+a\cos\theta\,d\theta\,\hat k\right)}

Hence the net electric field will be,

\displaystyle\longrightarrow\vec{\sf{E}}=\sf{\int\limits_0^{2\pi}\dfrac{kq}{2\pi s^3}\left(r\,d\theta\,\hat i-a\sin\theta\,d\theta\,\hat j+a\cos\theta\,d\theta\,\hat k\right)}

\displaystyle\longrightarrow\vec{\sf{E}}=\sf{\dfrac{kq}{2\pi s^3}\left(r\,\hat i\int\limits_0^{2\pi} d\theta-a\,\hat j\int\limits_0^{2\pi}\sin\theta\,d\theta+a\,\hat k\int\limits_0^{2\pi}\cos\theta\,d\theta\right)}

\displaystyle\longrightarrow\vec{\sf{E}}=\sf{\dfrac{kq}{2\pi s^3}\left(r\,\hat i\Big[\theta\Big]_0^{2\pi}+a\Big[\cos\theta\Big]_0^{2\pi}\,\hat j+a\Big[\sin\theta\Big]_0^{2\pi}\,\hat k\right)}

\displaystyle\longrightarrow\vec{\sf{E}}=\sf{\dfrac{kq}{2\pi s^3}\left(2\pi r\,\hat i\right)}

\displaystyle\longrightarrow\vec{\sf{E}}=\sf{\dfrac{kqr}{s^3}\,\hat i}

From (2),

\displaystyle\longrightarrow\vec{\sf{E}}=\sf{\dfrac{kqr}{\left(r^2+a^2\right)^{\frac{3}{2}}}\,\hat i}

and so it's magnitude is,

\displaystyle\longrightarrow\sf{E=\dfrac{kqr}{\left(r^2+a^2\right)^{\frac{3}{2}}}\quad\quad\dots(3)}

or,

\displaystyle\longrightarrow\sf{E=\dfrac{kqr}{r^3\left(1+\dfrac{a^2}{r^2}\right)^{\frac{3}{2}}}}

\displaystyle\longrightarrow\sf{E=\dfrac{kq}{r^2\left(1+\dfrac{a^2}{r^2}\right)^{\frac{3}{2}}}\quad\quad\dots(4)}

At the center,

  • \sf{r=0 }

Then (3) becomes,

\sf{\longrightarrow E=0}

I.e., no electric field is experienced at the center of the ring.

At a very large distance away from the center,

  • \sf{r\to\infty}

so that \sf{a<<r} and thus \sf{\dfrac{a^2}{r^2}} can be neglected.

Then (4) becomes,

\displaystyle\longrightarrow\sf{E=\dfrac{kq}{r^2}}

This is same as the expression for electric field due to a point charge, i.e., for large distances the ring behaves like a point charge.

Attachments:
Similar questions