Math, asked by Shweta25New, 1 year ago

a chord of a circle of radius 15 CM subtends an angle of 60° at the centre find the areas of the corresponding minor and major segment of the circle.

Answers

Answered by TheLifeRacer
240
heya,
.Area of sector ABCD =πr^2¢/360°

=)22/7×15×15×60°/360°

=)117.85.

Area of ∆ABC.

=1/2r^2sin¢

=)1/2×15×15×√3/2

=)225√3/4

=)97.3125.

minor segment BDC=Area of sector ABDC-Area of triangle ABC.
=117.85-97.3125
=)20.53 ___1)

and again ,Area of circle =πr^2¢

=)22/7×15×15

=)707.14.cm^2.
.
so, major segment BDC
=)Area of circle - minor segment.

=)707.14-20.5

=)686.642 Ans


hope it help you.


@rajukumar1☺
Attachments:

Shweta25New: u r welcome
Answered by Anonymous
116

Radius of the circle = 15 cm

ΔAOB is isosceles as two sides are equal.

∴ ∠A = ∠B

Sum of all angles of triangle = 180°

∠A + ∠B + ∠C = 180°

⇒ 2 ∠A = 180° - 60°

⇒ ∠A = 120°/2

⇒ ∠A = 60°

Triangle is equilateral as ∠A = ∠B = ∠C = 60°

∴ OA = OB = AB = 15 cm

Area of equilateral ΔAOB = √3/4 × (OA)2 = √3/4 × 152  

                                          = (225√3)/4 cm2 = 97.3 cm2

 

Angle subtend at the centre by minor segment = 60°

Area of Minor sector making angle 60° = (60°/360°) × π r2 cm2

                                                                                     = (1/6) × 152 π  cm2 =  225/6 π  cm2

                                                  =  (225/6) × 3.14 cm2 = 117.75  cm2

Area of the minor segment = Area of Minor sector - Area of equilateral ΔAOB

                                            = 117.75  cm2 - 97.3 cm2 = 20.4 cm2

 

Angle made by Major sector = 360° - 60° = 300°

Area of the sector making angle 300° = (300°/360°) × π r2 cm2

                                                   = (5/6) × 152 π  cm2 =  1125/6 π  cm2

                                                  =  (1125/6) × 3.14 cm2 = 588.75  cm2

Area of major segment = Area of Minor sector + Area of equilateral ΔAOB

                                            = 588.75  cm2 + 97.3 cm2 = 686.05 cm2


hope its help you

thanx and be brainly...........................

Similar questions