Math, asked by Anonymous, 2 months ago

A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle.
-----------------
Don't Spam
No irrelevent answers!!
________​

Answers

Answered by LovelysHeart
224

.Area of sector ABCD =πr^2¢/360°

=)22/7×15×15×60°/360°

=)117.85.

Area of ∆ABC.

=1/2r^2sin¢

=)1/2×15×15×√3/2

=)225√3/4

=)97.3125.

minor segment BDC=Area of sector ABDC-Area of triangle ABC.

=117.85-97.3125

=)20.53 ___1)

and again ,Area of circle =πr^2¢

=)22/7×15×15

=)707.14.cm^2.

.

so, major segment BDC

=)Area of circle - minor segment.

=)707.14-20.5

=)686.642 Ans

 \:  \:

kevy leave mat kr na pls...

pls Don't upset :(

Answered by Anonymous
11

Answer~

Given:-

  • Radius = 15cm
  • Angle A = Angle B

a) Area of minor segment

  • Area of minor sector

 \longrightarrow { \frac{ \theta}{360 \degree} \times \pi \: r ^2}

 \longrightarrow \:  \frac{60 \degree}{360 \degree}  \times (15)^2 \times 3.14cm^2

 \longrightarrow \bold \red{117.75cm^2}

  • Area of triangle, here we can see the triangle is equilateral.

 \longrightarrow \:  \frac{ \sqrt{3} }{4}  \times (oa)^2

 \longrightarrow \:  \frac{ \sqrt{3} }{4}  \times (15)^2

 \longrightarrow  \bold\red {97.3cm^2}

  \bold  \blue{Area  \: of \:  minor  \: segment \:  =  \: Area \:  of  \: sector \:  - \:  Area \:  of \:  triangle.}

  \blue \: \bold {Area \:  of  \: minor  \: segment =}117.75 - 97.3cm \: sq.

 \longrightarrow \: 20.4cm \: sq.

So we got area of minor segment as 20.4 cm sq.

_____________________________________

b) Area of major segment

  • Area of major sector
  • Angle 360-60=300

\longrightarrow { \frac{ \theta}{360\degree} \times \pi \: r ^2}

\longrightarrow { \frac{ 300 \degree}{360\degree} \times 3.14 \times  \: (15)^2}

\longrightarrow \bold \red {588.75cm \: sq}.

Area of major segment = Area of major sector+ Area of equilateral∆AOB

 \longrightarrow \: 588.75cm \: sq  + 97.3cm \: sq.

 \longrightarrow \bold \red{686.05cm \: sq.}

Attachments:
Similar questions