Math, asked by hgfbh, 10 months ago

A chrod of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding:
i) Minor segment
ii) Major segment
(use π=3.14).

Answers

Answered by Anonymous
18

 \huge \sf \purple{Solution.}

1. r = 10 cm

ϴ = 90°

Area of minor sector

 = \frac{θ}{360°} \times \pi \: r {}^{2}

 = \frac{90°}{360°} \times 3.14 \times 10 \times 10

 = 78.5 \: cm {}^{2}

Area of ∆ AOB

 =  \frac{1}{2}r {}^{2}  \sin θ

 \frac{1}{2}(10) {}^{2}  \sin90°

 =  \frac{100}{2} \times 1 = 50 \: cm {}^{2}

1. ∴ Area of the minor segment

= Area of minor sector – Area of ∆ OAB

= 78.5 cm² – 50 cm² = 28.5 cm²

2. Area of major sector

= Area of circle – Area of minor sector

\pi \: r {}^{2}  - 78.5

 = 3.14 \times 10 \times 10 - 78.5

 = 314 - 78.5 = 235.5 \: cm {}^{2}

 \huge \sf \green{Alternative \: Method}

Area of major sector

 =  \frac{(360° - θ)}{360°} \times \pi \: r {}^{2}

 =  \frac{(360° - 90°)}{360°} \times 3.14 \times (10) {}^{2}

 = 235. \: cm {}^{2}

Attachments:
Similar questions