Math, asked by addubey81, 11 months ago

A circle has an area of 1375 sq cm If a sector of the circle has an area of 275 sq cm, find its angular measure.​

Answers

Answered by anitasevda88gmailcom
3

Answer:

your answer is 3.....And upper side is your solution with correct answer.....

Please mark it brainliest and mark me Thanks also.... And please follow me....

Attachments:
Answered by Anonymous
6

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

  • Area of circle = 1375 cm²
  • Area of Sector = 275 cm²

Solution

We have formula for area of circle :

\Large{\boxed{\boxed{\sf{Area \: = \: \pi r^2}}}}

 \rightarrow 1375  =  \:  \pi {r}^{2}  \\   \rightarrow {r}^{2}  \:  =  \:  \dfrac{1375}{ \pi} \\  \\  \implies \large{ \boxed{ \sf{ {r}^{2} \: =  \:  \frac{1375}{ \pi} }}}

Now use formula for area of sector :

\Large{\boxed{\boxed{\sf{Area \: = \: \dfrac{\pi r^2 (\theta) }{360^{\circ}}}}}}

Put Values

Put value of r²

 \rightarrow 275 \: = \: \dfrac{\cancel{\pi} \: \frac{1375}{\cancel{\pi}} (\theta) }{360}

 \rightarrow 275 \: = \: \dfrac{1375 \theta}{360}

 \rightarrow 275 \: \times \: 360 \: = \: 1375 \theta

 \rightarrow 9900 \: = \: 1375 \theta

 \rightarrow \theta \: = \: \dfrac{9900}{1375}

 \rightarrow \theta \: = \: 72^{\circ}

\LARGE {\underline{\boxed{\sf{\theta \: = \: 72^{\circ}}}}}

Similar questions