Math, asked by priyarangas, 1 month ago

A circle of radius 120 m is divided into 8 equal sectors. Find the length of the arc of each of the sectors.​

Answers

Answered by Liam450
15

\huge\red{\fbox{SOLUTION:-}}

see in the attachment

hope it helps you!!!

Attachments:
Answered by Anonymous
112

Question:

  • A circle of radius 120 m is divided into 8 equal sectors. Find the length of the arc of each of the sectors.​

Answer:

  • The length of the arc is 30 π m

Explanation:

Given that:

  • The radius of a circle is 120 m
  • It is divided into 8 equal sectors

To Find:

  • The length of the arc of each sector

Required Solution:

  • Now let's find the angle made by the each segment

\leadsto \;{\pink{\boxed{\bf{ Angle(\emptyset) = \dfrac{360}{No. of \; segments} }}}  

Calculations :

\longrightarrow \rm Central \; angle \; (\emptyset ) = \dfrac{360}{n}

\longrightarrow \rm Central \; angle \; (\emptyset ) = \dfrac{360}{8}

\longrightarrow {\red{\underline{\underline{\rm {Central \; angle \; (\emptyset ) =45^0}}}}}

\; \; \; \; \; \; {\underline{\pmb{\sf{ Henceforth , the \; measure \; of \; the \; central \; angle \; is \; 45 ^0 }}}}

~ Now let's find the length of each of the arc

  • Using formula to find the length of the arc

\leadsto \; {\boxed{\bf{ Length \; of \; arc = \frac{\emptyset}{360^0} * 2\pi r}}}

Calculations :

\longrightarrow \rm Length \; of \; arc  = \dfrac{\emptyset}{360^0} * 2\pi r

\longrightarrow \rm Length \; of \; arc  = \dfrac{45^0}{360^0} * 2\pi (120m)

\longrightarrow \rm Length \; of \; arc  = \dfrac{1}{8} * 2*\pi * 120\; m

\longrightarrow \rm Length \; of \; arc  =  2* \pi * 15 \; m

\longrightarrow {\red{\underline{\underline{\rm {Length \; of \; arc\; =30 \pi \; m }}}}}

\; \; \; \; \; \; {\underline{\pmb{\sf{ Henceforth , the \; measure \; of \; the \; arc  \; is \; 30 \pi  \; m}}}}

Therefore:

  • The measure of each of the arc of the circle is 30π m

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions