Math, asked by pranali746, 2 months ago

A circle with centre p has a chord BQ=24cm.the diameter of the circle is 26 cm.Find that distance of chord from the centre of circle

Answers

Answered by sambitsn2006
2

Answer:

5 cm

Step-by-step explanation:

Answer

R.E.F image

Given diameter of circle = 26 cm

diameter =2r = 26 cm

radius = 13 cm

length of chord of circle = 24 cm

Given OA = 13 cm

AC=

2

AB

=12cm

∴OC=

OA

2

−AC

2

(By Pythagoras theorem)

=

(13)

2

−(12)

2

=

169−144

=

25

=5cm

Answered by King412
104

 \\ \bigstar   \: \large \bold{ \underline{ \underline{Given :- }}}

  • A circle with centre p.
  • Length of Diameter = 26 cm
  • Length of chord = BQ = 24 cm
  • Line PC is perpendicular to chord AB.

 \\ \bigstar   \: \large \bold{ \underline{ \underline{To  \: find  :- }}}

  • Distance of chord from the centre of circle. ( Distance PC )

 \\ \bigstar   \: \large \bold{ \underline{ \underline{Solution  :- }}}

At first, We have to find Th radius of circle

So,

 \\  \sf \:  \:  \:  \: Diameter = {Radius} \times 2 \\

 \\  \sf \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  {Radius} =  \frac{Diameter}{2}  \\

 \\  \sf \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  {Radius} =  \frac{26}{2}  \\

 \\  \sf \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:   \green{{Radius}  = PA   = 13 } \\

So,  \sf AC = \dfrac{AB}{2} = 12cm

Now, Using Pythagoras theorem .

 \\   \:  \:  \:  \: \sf \: PC^{2}   = PA^{2}  -  AC ^{2}  \\

 \\   \:  \:  \:  \: \sf \: \:  \:  \:  \:  \:  \:  \:  = 13^{2}  -  12^{2}  \\

 \\   \:  \:  \:  \: \sf \: \:  \:  \:  \:  \:  \:  \:  = 169-  144 \\

 \\   \:  \:  \:  \: \sf \: \:  \:  \:  \:  \:  \:  \:  = 25\\

Therefore,  \sf PC = \sqrt{25}

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf   \:  \:  \:  \:  \:  \:  \red{\boxed{\frak{ PC = 5cm}} }\\

Hence, The distance of chord from the centre of circle is 5 cm .

Attachments:
Similar questions