Math, asked by WaterFairy, 11 days ago

A Circular flower bed is Surrounded by a path 4m Wide. The diameter of the flower bed is 66 m. What is the area of this path? (take π = 3.14).​

Answers

Answered by biharis01
36

Step-by-step explanation:

A circular flower bed is surrounded by a path 4 m wide. The diameter of the flower bed is 66 m. The area of this path is 879.20 m2.

Answered by MarsalaMagic
116

\huge \mathcal \colorbox{deeppink}{{ \color{pink} \huge {Given♡:-}}}

  • The width of path =4m
  • The diameter of the flower bed = 66m

\huge \mathcal \colorbox{darkgreen}{{ \color{white} \huge {Find♡:-}}}

  • Area of path

\huge \mathcal \colorbox{darkblue}{{ \color{pink} \huge {Solution♡:-}}}

  • Radius \:  of \:  flower \:  bed \: =  \frac{66}{2}  = 33m.
  • Radius of flower bed & path together 66m

  • 33m + 4m = 37m.

  • Area of flower bed & path together=πr²

3.14 × (37 m)²

3.14 × 1369m²

=4, 298.66m²

  • Area of flower bed = πr²

3.14x (33m)²

3.14x 1,089m²

= 3,419.46m².

  • Area of path = Area of flower bed & path together - Area of flower bed.

4298.66 m² - 3 419.46m² = 879.20m².

Therefore, the area of this path is 879.20m²

____________________

\begin{gathered}\begin{gathered}\dag\frak \red{Learn \: more \: about \: formulas \: of \: area\:and\:perimeter\:}\begin{cases}\sf{\;\;\; \red \divideontimes \: Perimeter \:  of \:  a  \: square  \: \bf{  = 4 × side}}\\\sf{\;\;\;  \red\divideontimes Perimeter \:  of  \: a  \: rectangle \:  \bf{= 2 × (length + breadth)  }}\\\sf{\;\;\;\red\divideontimes Area \:  of  \: a \:  square \:  \bf{= side × side \:  or  \: (Side)² }}\\\sf{\;\;\; \red\divideontimes Area \:  of  \: a  \: rectangle \:  \bf{= length × breadth}}\\\sf{\;\;\; \red\divideontimes \: Area  \: of  \: a \:  parallelogram  \bf{= base × height}}\\\sf{\;\;\; \red\divideontimes \: Area  \: of  \: a  \: triangle \bf =  \frac{1}{2}   × (area  \: of \:  the  \: parallelogram  \: generated  \: from \:  it) \bf{= \frac{1}{2} \times  base  \times  height }}\\\sf{\;\;\; \red\divideontimes Circumference \:  of  \: a \:  circle  \:  \bf{= 2πr \:  or  \: πd }}\\\sf{\;\;\;\red\divideontimes Area  \: of  \: a \:  circle \:   \bf{= πr²}}\end{cases}\end{gathered} \end{gathered}

Attachments:
Similar questions