Math, asked by rajinder1085, 1 year ago

a circular grassland has the perimeter of 660m .a plot in the shape of a square having its vertices on the circumference of the field is marked in the field.calculate the area of the square field.

Answers

Answered by Anonymous
49

\huge\bf\red{\underline{\underline{Given}}}\::

  • \sf\gray{Perimeter \:of \:circular\: grassland \:= \:660m}
  • \sf\gray{A\:plot \:in\: the\: shape\: of \:a\: square\: having\: its\: vertices \:on\: the\: circumference \:of \:the\: field\: is \:marked\: in \:the \:field.}

\huge\bf\red{\underline{\underline{To\:Find}}}\::

  • \sf\gray{Area\: of \:the\: square\:field}

\huge\bf\red{\underline{\underline{Solution}}}\::

  • \sf\underline\orange{Perimeter\:=\:660m}

\Rightarrow\: \sf\purple{2\pi r\:=\:660}

\Rightarrow\: \sf\green{r\:=\:\dfrac{660}{2\pi}}

\Rightarrow\: \sf\purple{r\:=\:\dfrac{660\:\times\:7}{2\:\times\:22}}

\Rightarrow\: \sf\purple{r\:=\:15\:\times\:7}

\Rightarrow\: {\boxed{\sf{\green{r\:=\:105m}}}}

  • \sf\underline\orange{Diameter\:=\:2r}

\to\:\sf\blue{Diameter\:=\:2\:\times\:105}

\to\:\sf\orange{Diameter\:=\:210m}

\to\:\sf\blue{2r\:=\:d\:=\: diagonal\:of\: square}

\star\:\underline{\boxed{\sf{\pink{Area\:of\: square\:=\:\dfrac{1}{2}\:(diagonal)^{2} }}}}

\mapsto\:\sf\purple{Area\:of\: square\:=\:\dfrac{1}{2}\:(210)^{2}}

\mapsto\:\sf\green{Area\:of\: square\:=\:\dfrac{\cancel{44100}^{22050}}{\cancel{2}_{1}}}

\mapsto\:{\large\underline{\boxed{\mathfrak{\red{Area\:of\: square\:=\:22050m^{2} }}}}}

Attachments:
Answered by harshch2208
0

Answer:

Perimeter=660m

\Rightarrow\: \sf\purple{2\pi r\:=\:660}⇒2πr=660

\Rightarrow\: \sf\green{r\:=\:\dfrac{660}{2\pi}}⇒r=

660

\Rightarrow\: \sf\purple{r\:=\:\dfrac{660\:\times\:7}{2\:\times\:22}}⇒r=

2×22

660×7

\Rightarrow\: \sf\purple{r\:=\:15\:\times\:7}⇒r=15×7

\Rightarrow\: {\boxed{\sf{\green{r\:=\:105m}}}}⇒

r=105m

\sf\underline\orange{Diameter\:=\:2r}

Diameter=2r

\to\:\sf\blue{Diameter\:=\:2\:\times\:105}→Diameter=2×105

\to\:\sf\orange{Diameter\:=\:210m}→Diameter=210m

\to\:\sf\blue{2r\:=\:d\:=\: diagonal\:of\: square}→2r=d=diagonalofsquare

\star\:\underline{\boxed{\sf{\pink{Area\:of\: square\:=\:\dfrac{1}{2}\:(diagonal)^{2} }}}}⋆

Areaofsquare=

2

1

(diagonal)

2

\mapsto\:\sf\purple{Area\:of\: square\:=\:\dfrac{1}{2}\:(210)^{2}}↦Areaofsquare=

2

1

(210)

2

\mapsto\:\sf\green{Area\:of\: square\:=\:\dfrac{\cancel{44100}^{22050}}{\cancel{2}_{1}}}↦Areaofsquare=

2

1

44100

22050

\mapsto\:{\large\underline{\boxed{\mathfrak{\red{Area\:of\: square\:=\:22050m^{2} }}}}}↦

Areaofsquare=22050m

2

Similar questions