A circular park of radius 20 m is
situated in a colony. Three boys Ankur, Syed and
David are sitting at equal distance on its boundary
each having a toy telephone in his hands to talk each
other. Find the length of the string of each phone.
Answers
Let BD = x cm
Then in right triαngle ODB,
⠀⠀⠀⠀⠀⠀⠀OB² = OD² + BD²
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀| By Pythαgorαs theorem
Areα of equilαteral triαngle ABC
:
:
Agαin, αreα of equilaterαl triαngle ABC
= Areα of Δ OBC + Areα of Δ OCA
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ + Areα of Δ OAB
=
=
=
From equαtions (1) and (2),
Squαring both sides,
- Factorise 300 and simplify the equation.
⠀⠀⠀⠀⠀⠀Hence, the length of string of eαch phone is
__________________________
Answer:
Let BD = x cm
Then in right triαngle ODB,
⠀⠀⠀⠀⠀⠀⠀OB² = OD² + BD²
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀| By Pythαgorαs theorem
\implies{\sf{(20)^{2}=OD^{2} + x^{2}}}⟹(20)
2
=OD
2
+x
2
\implies{\sf{(400)=OD^{2} + x^{2}}}⟹(400)=OD
2
+x
2
\implies{\sf{OD^{2}=400+ x^{2}}}⟹OD
2
=400+x
2
\implies{\sf{OD= \sqrt{400+x^{2}}}}⟹OD=
400+x
2
Areα of equilαteral triαngle ABC
:\implies{\sf{ \dfrac{ \sqrt{3}}{4}(side)^{2} = \dfrac{\sqrt{3}}{4}(BC)^{2}}}⟹
4
3
(side)
2
=
4
3
(BC)
2
:\implies{\sf{ \dfrac{ \sqrt{3}}{4}(2BD)^{2} = \sqrt{3}(BD)^{2} = \sqrt{3}x^{2}\:\:\:\:\:\:\:\:...(1)}}⟹
4
3
(2BD)
2
=
3
(BD)
2
=
3
x
2
...(1)
Agαin, αreα of equilaterαl triαngle ABC
= Areα of Δ OBC + Areα of Δ OCA
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ + Areα of Δ OAB
= \displaystyle{\sf{3\:Area\:of\:Δ\:OBC\:=\:3 \dfrac{(BC)\:(OD)}{2}}}3AreaofΔOBC=3
2
(BC)(OD)
= \displaystyle{\sf{ \dfrac{3(2BD)(OD)}{2} = 3(BC)(OD)}}
2
3(2BD)(OD)
=3(BC)(OD)
= \displaystyle{\sf{3x\: \sqrt{400-x^{2}}\:\:\:\:\:\:\:\:\:...(2)}}3x
400−x
2
...(2)
From equαtions (1) and (2),
\displaystyle{\sf{\:\:\:\:\:\:3x\: \sqrt{400-x^{2}} = \sqrt{3}x^{2}}}3x
400−x
2
=
3
x
2
\implies{\sf{\:\:\:\:\:\sqrt{3}\: \sqrt{400-x^{2}} = x}}⟹
3
400−x
2
=x
Squαring both sides,
\displaystyle{\sf{\:\:\:\:\:3(400-x^{2})= x^{2}}}3(400−x
2
)=x
2
\implies{\sf{\:\:\:\:\:1200-3x^{2}= x^{2}}}⟹1200−3x
2
=x
2
\implies{\sf{\:\:\:\:\:4x^{2}= 1200}}⟹4x
2
=1200
\implies{\sf{\:\:\:\:\:x^{2}= \dfrac{1200}{4}}}⟹x
2
=
4
1200
\implies{\sf{\:\:\:\:\:x^{2}= 300}}⟹x
2
=300
\implies{\sf{\:\:\:\:\:x= \sqrt{(300)}}}⟹x=
(300)
Factorise 300 and simplify the equation.
\implies{\sf{\:\:\:\:\:x= \sqrt{2\times2\times3\times5\times5}}}⟹x=
2×2×3×5×5
\implies{\sf{\:\:\:\:\:x=10 \sqrt{3}}}⟹x=10
3
\implies{\sf{\:\:\:\:\:BD\:=\:10 \sqrt{3}}}⟹BD=10
3
\implies{\sf{\:\:\:\:\:2BD\:=\:20 \sqrt{3}}}⟹2BD=20
3
\large\implies{\boxed{\bf{\purple{\:\:\:\:\:BC\:=\:20\sqrt{3}}}}}⟹
BC=20
3
⠀⠀⠀⠀⠀⠀Hence, the length of string of eαch phone is \displaystyle{\sf{20\sqrt{3}m.}}20
3
m.