Physics, asked by ranjeetoddy500, 3 months ago

A coil consists of 2000 turns of copper wire having a cross-sectional area of 0.8 mm2. The mean length per turn is 80 cm and the resistivity of copper is 0.02 OHM-m. Find the resistance of the coil and power absorbed by the coil when connected across 110 V d.c. supply.​

Answers

Answered by ADARSHBrainly
18

Given :-

  • Number of Turns = 2000 turns.
  • Area of Cross - sectional area = 0.8mm².
  • Mean length per turn = 80 cm
  • Resistivity of Copper = 0.02 μΩ–m.
  • Volt = 110 d.c

To find :-

  • Resistance of the coil.
  • Power absorbed.

Solution :-

● Length of the coil

\:  \:  \:  \:  \:  \:  \:  \: { \bf{ l = 0.8 \times 2000 }} \\    { \underline{ \boxed{ \bf{ l= 1600m }}}}

● Cross - sectional Area of Wire is

{ \bf{A = 0.8  \: mm^{2} }}\\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:{ \underline{ \boxed{ \bf{A  = 0.8  \times 10^{ - 6}  {m}^{2}  }}}}

● Resistivity of copper

{ \bf{\rho = 0.02  \: \mu \O-m }}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: { \bf{= 2 \times 10 ^{ -2} \times 10 ^  {-6} \O-m}}  \\ { \underline{ \boxed{ \bf{= 0.02 \times 10 ^{-6} \: \O-m}}}}

■ Resistance of the coil is :-

{ \large{ \underline{ \boxed{ \bf{ \green{R =\rho \: \cfrac{l }{A }}}}}}}

{ \large{ \bf{R =\rho \: \cfrac{l }{A }}}}

{ \bf{R =(0.02 \times 10^{  - 6} ) \times \cfrac{1600 }{(0 .8 \times 10^{ - 6})  }}}

{\bf{R =0.02 \times  \cfrac{1600}{0.8} }}

{\bf{R = 0.025 \times 1600}}

 \Large{ \underline{ \boxed{ \red{\bf{R = 40 \: \: Ohm }}}}}

■ Power absorbed by coil is :-

{ \large{ \underline{ \boxed{ \green{ \bf{Power  \:  \: absorbed = \frac{  V ^{2}  }{R }}}}}}}

Here

  • V = Volt
  • R = Resistance

{ \bf{Power  \: absorbed =  \cfrac{(110)^{2} }{40} }}

{ \bf{Power \:  \:  absorbed =  \cfrac{110 \times 110}{40} }}

{ \bf{Power \:  \:  absorbed =  2.75 \times 110}}

{ \Large{ \underline{ \boxed{ \red{ \bf{Power  \:  absorbed =302.5 \:  W}}}}}}

○ Final Answer :-

  • Resistance of the coil is 40 Ω
  • Power Absorbed is 302.5 W
Answered by srnroofing171711
5

Answer:

302.5W is correct answer

Explanation:

Given:-

===>no of turn:2000

===>Mean length:80 cm

===>Resistivity of copper: 0 .02 ohm

===>volt:110.

Similar questions