Physics, asked by ranveerkumarspj7, 8 months ago

A coil having a resistance and inductance of 5-ohm and 32 mH respectively is connected in series with 796pF

capacitor. Determine the resonant frequency of the circuit.​

Answers

Answered by Anonymous
19

Answer:

 \boxed{\mathfrak{Resonant \ frequency \ (f) = 3.2 \times 10^4 \ Hz}}

Given:

Resistance = 5 Ω

Inductance (L) = 32 mH =  \sf 32 \times 10^{-3} H

Capacitance (C) = 796 pF =  \sf 796 \times 10^{-12} F

Explanation:

Resonant frequency (f) formula:

 \boxed{ \bold{f = \dfrac{1}{2 \pi \sqrt{LC}}}}

By substituting values in the formula we get:

 \rm \implies f =  \dfrac{1}{2\pi \sqrt{32 \times  {10}^{ - 3} \times 796 \times  {10}^{ - 12}  } }  \\  \\  \rm \implies f =  \dfrac{1}{2 \times 3.14 \times  \sqrt{2547.2 \times  {10}^{ - 14} }  }  \\  \\  \rm \implies f =  \frac{1}{2 \times 3.14 \times 50.47 \times  {10}^{ - 7} }  \\  \\  \rm \implies f = 3.2 \times  {10}^{4}  \: Hz

Answered by ItzDeadDeal
25

Answer:

 \blue{\boxed{\tt{Resonant \ frequency \ (f) = 3.2 \times 10^4 \ Hz}}}</p><p>

 \green{ \sf 32 \times 10^{-3}}

Given:

Resistance = 5 Ω

Inductance (L) = 32 mH =

Capacitance (C) = 796 pF =

 \red{\sf 796 \times 10^{-12}}</p><p>

Explanation:

Resonant frequency (f) formula:

 \orange{\boxed{ \bold{f = \dfrac{1}{2 \pi \sqrt{LC}}}} }</p><p>

By substituting values in the formula we get:

 \pink{\begin{gathered}\rm \implies f = \dfrac{1}{2\pi \sqrt{32 \times {10}^{ - 3} \times 796 \times {10}^{ - 12} } } \\ \\ \rm \implies f = \dfrac{1}{2 \times 3.14 \times \sqrt{2547.2 \times {10}^{ - 14} } } \\ \\ \rm \implies f = \frac{1}{2 \times 3.14 \times 50.47 \times {10}^{ - 7} } \\ \\ \rm \implies f = 3.2 \times {10}^{4} \: Hz\end{gathered}}</p><p>

Similar questions