Physics, asked by shubhamchaudharycs20, 5 months ago

A coil of inductance 80 mH and resistance 60 ohm is connected to a 200 V, 100 Hz supply
Calculate the circuit impedance and the current taken from the supply.​

Answers

Answered by DARLO20
4

\Large\bf{\color{indigo}GiVeN,} \\

  • A coil of inductance [L] = 80 mH = 80 × 10³ H

  • Resistance [R] = 60 Ω

  • Voltage [Vᵣₘₛ] = 200 V

  • Frequency [f] = 100 Hz

\Large\bf{\color{coral}To\:FiNd,} \\

  1. The circuit impedance.
  2. The current taken from the supply.

\Large\bf{\color{lime}CaLcUlAtIoN,} \\

\bf\blue{We\:know\:that,} \\

\red\bigstar\:\:\bf\orange{Inductive\:reactance\:(X_L)\:=\:\omega\:L\:} \\

:\implies\:\:\bf{X_L\:=\:2\:\pi\:f\:L\:} \\

:\implies\:\:\bf{X_L\:=\:2\times{3.14}\times{100}\times{80\times{10^{-3}}}\:} \\

:\implies\:\:\bf{X_L\:=\:50240\times{10^{-3}}\:} \\

:\implies\:\:\bf\green{X_L\:=\:50.24\:\Omega\:} \\

\bf\purple{We\:know\:that,} \\

\pink\bigstar\:\:\bf\blue{Impedance\:(Z)\:=\:\sqrt{R^2\:+\:X_L^2}\:} \\

:\implies\:\:\bf{Z\:=\:\sqrt{(60)^2\:+\:(50.24)^2}\:} \\

:\implies\:\:\bf{Z\:=\:\sqrt{3600\:+\:2524.05}\:} \\

:\implies\:\:\bf{Z\:=\:\sqrt{6124.05}\:} \\

:\implies\:\:\bf{\color{olive}Z\:=\:78.25\:\Omega} \\

\Large\bold\therefore The circuit impedance is 78.25 Ω.

\bf\green{We\:know\:that,} \\

\purple\bigstar\:\:\bf{\color{peru}Current\:(I)\:=\:\dfrac{Voltage}{Resistance}\:} \\

:\implies\:\:\bf{I\:=\:\dfrac{200}{60}\:} \\

:\implies\:\:\bf\orange{I\:=\:3.34\:A\:} \\

\Large\bold\therefore The current supplied is 3.34 A.

Answered by vinshultyagi
19

Given:-

A coil of inductance [L] = 80 mH = 80 × 10⁻³ H

Resistance [R] = 60 Ω

Voltage [Vᵣₘₛ] = 200 V

Frequency [f] = 100 Hz

To Find:-

The circuit impedance.

The current taken from the supply.

Solution:-

We have ,

\sf\red{Inductive\:reactance\:(X_L)\:=\:\omega\:L\:}

\sf\to{X_L\:=\:2\:\pi\:f\:L\:}

\sf\to{X_L\:=\:2\times{3.14}\times{100}\times{80\times{10^{-3}}}\:}

\sf\to{X_L\:=\:50240\times{10^{-3}}\:}

\sf\to{X_L\:=\:50.24\:\omega\:}

We have,

\sf\blue{Impedance\:(Z)\:=\:\sqrt{R^2\:+\:X_L^2}\:}

\sf\to{Z\:=\:\sqrt{(60)^2\:+\:(50.24)^2}\:}

\sf\to{Z\:=\:\sqrt{3600\:+\:2524.05}\:}

\sf\to{Z\:=\:\sqrt{6124.05}\:}

\sf \to Z\:=\:78.25\:\omega

\sf\therefore\:The\: circuit\: impedance \:is \:78.25 Ω.

We have ,

\sf\green{Current\:(I)\:=\:\dfrac{Voltage}{Resistance}\:}

\to{I\:=\:\dfrac{200}{60}\:}

\sf\implies{\boxed{I\:=\:3.34\:A\:}}

\sf\therefore\: The\: current \:supplied\: is \:3.34 A.

Similar questions