Math, asked by Anonymous, 4 months ago

A coin is tossed 1000 times with the following frequencies:
Head : 455, Tail : 545
Compute the probability for each event.


\bold{with \: full \: explanation}


❌ Don't spam ❌​

Answers

Answered by shaktisrivastava1234
86

 \Huge  \underline{\boxed {\bf{Answer:}}}

 \Large   \underline{\underline{\red {\frak{Given::}}}}

 \sf{ \mapsto{Total \:  times  \: coins  \: tossed=1,000 times}}

 \sf {\mapsto{Frequency  \: of  \: head=455 times}}

 \sf {\mapsto{Frequency  \: of  \: tail=545 times}}

 \Large   \underline{\underline{\red {\frak{To  \: find::}}}}

 \sf {\leadsto{Compute  \: the  \: probability  \: of \:  each \:  event.}}

 \Large   \underline{\underline{\red {\frak{Formula \:  required::}}}}

 \pink \star{ \boxed{ \sf{P(E) = \frac{Number \:  of  \: trials  \: in  \: which \:  the  \: event  \: happens \: }{Total  \: number  \: of \:  trails}  =  \frac{m}{n} }}} \pink \star

 \Large   \underline{\underline{\red {\frak{According \:  to  \: Question::}}}}

{ \implies{ \sf{P(E) = \frac{Number \:  of  \: trials  \: in  \: which \:  the  \: event  \: happens \: }{Total  \: number  \: of \:  trails}  =  \frac{m}{n} }}}

{ \implies{ \sf{P(H)= \frac{455}{1,000}  =  0.455 }}}

  {\implies{\bf{Probability \:  of  \: head  \: is  \: 0.455.}}}

{ \implies{ \sf{P(E) = \frac{Number \:  of  \: trials  \: in  \: which \:  the  \: event  \: happens \: }{Total  \: number  \: of \:  trails}  =  \frac{m}{n} }}}

{ \implies{ \sf{P(T)= \frac{545}{1,000}  =0.545 }}}

  {\implies{\bf{Probability \:  of  \: tail \: is  \: 0.545.}}}

______________________________________________


shaktisrivastava1234: If answer is helpful then express about my answer in comment and give ♥️.
Anonymous: Great answer , fully understood
shaktisrivastava1234: Thank you
Answered by HA7SH
94

Step-by-step explanation:

______________________________

 \Large\bf{\underbrace{\underline{Question:-}}}

:\Longrightarrow ● A coin is tossed 1000 times with the following frequencies:

Head : 455, Tail : 545 Compute the probability for each event.

 \Large\bf{\underbrace{\underline{To\ find:-}}}

:\Longrightarrow ● In this question we have to find the probability for each event.

 \Large\bf{\underbrace{\underline{Given:-}}}

:\Longrightarrow  \sf{●\ Total\ outcomes\ =\ 1000.}

:\Longrightarrow  \sf{●\ Frequency\ of\ heads\ =\ 455.}

:\Longrightarrow  \sf{●\ Frequency\ of\ tails\ =\ 545.}

 \Large\bf{\underbrace{\underline{Solution:-}}}

:\Longrightarrow ● In this question we are asked to find out the probability of all the possible outcomes. The "two possible outcomes" while tossing a coin are occurrence of heads and occurrence of tails. Therefore, we consider the two probabilities and calculate the result according.

 \bf{\underbrace{\underline{According\ to\ the\ question:-}}}

:\Longrightarrow  \sf{\qquad Let\ H\ be\ event\ of\ heads\ coming. \qquad}

:\Longrightarrow  \sf{\qquad And\ T\ be\ event\ of\ tails\ coming. \qquad}

:\Longrightarrow  \sf{\qquad Probability\ of\ heads\ =\ P(H)\ =\ \bigg (\dfrac{Number\ of\ heads}{Total\ number\ of\ trails} \bigg) \qquad}

:\Longrightarrow  \sf{\qquad =\ \bigg (\dfrac{455}{1000} \bigg) \qquad}

:\Longrightarrow  \sf\pink{\qquad =\ 0.455 \qquad}

 \bf{\underbrace{\underline{Probability\ of\ heads\ =\ 0.455}}}

:\Longrightarrow  \sf{\qquad Probability\ of\ tails\ =\ P(T)\ =\ \bigg (\dfrac{Number\ of\ tails}{Total\ number\ of\ trails} \bigg) \qquad}

:\Longrightarrow  \sf{\qquad =\ \bigg (\dfrac{545}{1000} \bigg) \qquad}

:\Longrightarrow  \sf\pink{\qquad =\ 0.545 \qquad}

 \bf{\underbrace{\underline{Probabilitiy\ of\ tails\ =\ 0.545}}}

 \Large\bf{\underbrace{\underline{Hence\ Verified}}}

______________________________

Similar questions