Physics, asked by tasnimkausar992, 9 months ago

a coin of radius 28mm . what is the area in (a)mm2 (b)cm2 no spamming from internet and no use of answers will be reported and correct answers will mark as a braniliest please help​

Answers

Answered by Skyllen
19

 \bf\implies \boxed{\bf{Area \: of \: circle = \pi r{}^{2} }}

a) In mm² ?

Ans.- Given radius = 28mm

 \sf \: Area \: of \: circular \: base \: of \: coin = \pi(r) {}^{2}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{22}{7}  \times 28mm \times 28mm

 \sf \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{22}{7}  \times 784mm {}^{2}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  =  \boxed{  \purple{\sf{ 2464mm {}^{2} }}}

b) In cm² ?

Ans.- We've to convert mm into cm.

Radius = 28mm = 28/10cm = 2.8cm

Again,

 \sf \: Area \: of \: circular \: base \: of \: coin = \pi(r) {}^{2}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{22}{7}  \times 2.8 \times 2.8

  \sf \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{22}{7}  \times 7.84cm {}^{2}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{172.48}{7}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  =  \boxed{ \purple{ \sf24.6cm {}^{2} }}

___________________________

  • Coin is in cylindrical shape

➸ Total surface area of cylinder = 2πr( r+h ).

➸ Curved surface area of cylinder = 2πrh

➸ Volume of cylinder = πr²h

➸ Perimeter of circle = 2πr

Answered by AestheticSky
10

Given:-

  • Radius of the coin = 28mm

To find:-

  • Area of this coin in mm² and cm²

Formula to be used:-

\underline{\boxed{\sf area\: of \: Circle = πr²}}

Solution:-

Area of the coin in mm² :-

\longrightarrow area = \sf\dfrac{22}{7} × 28²

\longrightarrow area = \sf\dfrac{22}{7} × 28 × 28

\longrightarrow area = 22 × 4 × 28

\longrightarrow area = 2464mm²

Area of Coin in cm² :-

  • Let's convert the radius of the coin which is given in mm info cm.

we know that 1 mm = \sf\dfrac{1}{10} cm

\longrightarrow Radius = 28 mm = \sf\dfrac{28}{10}cm = 2.8 cm

Now, Area of this coin :-

\longrightarrow area = \sf\dfrac{22}{7} × 2.8²

\longrightarrow area = 24.6 cm²

_________________________

Additional information:-

  • Total surface area of cylinder :-

\longrightarrow \underline{\boxed{\sf T.S.A = 2π2(r+h}}

  • Curved surface area of cylinder

\longrightarrow \underline{\boxed{\sf C.S.A = 2πrh}}

  • Volume of cylinder

\longrightarrow \underline{\boxed{\sf Volume = πr²h}}

Similar questions