Math, asked by nitispiano7, 1 day ago

A Component has an exponential time-to-failure distribution with mean of 10,000 hours. a) The component has already been in operation for its mean life. What is the probability that it will fail by 15,000 hours? b) At 15,000 hours the component is still in operation. What is the probability that it will operate for another 5000 hours?​

Answers

Answered by AishwariGhosh
2

Answer:

{eq}\text{ Exponential probability distribution has the next behavior: } \\[0.25cm]\\ \displaystyle f(x) \; = \; .

Answered by komalsharmasharma199
1

Answer:

Step-by-step explanation:

The exponential probability distribution has the following behavior:

\\[0.25cm]\\ \displaystyle f(x) \; = \; \left\{\begin{matrix} \frac{ 1 }{ \beta } \; {\rm e}^{ -x / \beta } & 0 \; < \; x \; < \; \infty \\ 0 & x < 0 \end{matrix}\right. \\[0.25cm]\\ \text{ Where: } \\[0.25cm]\\ \displaystyle \mu \; = \; E(x) \; = \; \beta \; = \; \frac{1}{ \lambda} \\[0.25cm]\\ {/eq}

Then, with \mu=10,000

We write:

\displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; \int_{ 10000 }^{ 15000 } \; \frac{ 1 }{ 10000 } \; {\rm e}^{ -x/ 10000 } \; dx \\[0.25cm]\\

\displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; -{{\rm e}^{-x/ 10000 }} \bigg|_{ 10000 }^{ 15000 } \\[0.25cm]\\ \displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; -{{\rm e}^{- 15000 / 10000 }} \; - \; ( -{{\rm e}^{- 10000 / 10000 }} \; ) \\[0.25cm]\\

\displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; -{{\rm e}^{- 15000 / 10000 }} \; + \; {{\rm e}^{- 10000 / 10000 }} \\[0.25cm]\\ \displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; -0.22313016 + 0.367879441 \\[0.25cm]\\ \displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; 0.144749281 \\[0.25cm]\\ \displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; 0.1447 \\[0.25cm]\\ \displaystyle P( \; 10000 \leq x \leq 15000 \; ) \; = \; 14.47 \; \%

We estimate that the remaining useful life of the component is close to 14%. So if this component is critical in our process, its timely replacement should be considered.

Similar questions