Physics, asked by kalairakshi1983, 9 months ago

A concave lens has a focal length 15cm . At what distance should the object be placed from the lens so that it forms an image at 10cm from the lens ? What will be the nature and magnification of the image ?

Answers

Answered by ShírIey
70

AnswEr:

\large\bold{\underline{\sf{\red{\:\:Given\:\:}}}}

• f = -15cm [focal length of the lens]

• v = -10cm [Object Distance]

\large\bold{\underline{\sf{\red{Using\: Lens\: Formula}}}}

\dag\:\:\large{\underline{\boxed{\sf{\blue{\dfrac{1}{f} \:=\:\dfrac{1}{v}\:-\:\dfrac{1}{u}}}}}}

Concave lens always former virtual Image so, v is negative & f is also negative.

\longrightarrow\sf\:\dfrac{\:\:1}{-15} = \dfrac{\:\:1}{-10} - \dfrac{1}{u}

\longrightarrow\sf\: \dfrac{1}{u}  = \dfrac{\:\;1}{-10} - \dfrac{\:\:1}{-15}

\longrightarrow\sf\: \dfrac{1}{u} = \dfrac{-3\:+\:2}{30}

\longrightarrow\sf\: \dfrac{1}{u} = \dfrac{-1}{30}

\longrightarrow\large{\underline{\boxed{\sf{\blue{u\:= \: -30\:cm}}}}}

\rule{150}2

\diamond\:\:\bold{\underline{\sf{\red{Now\: Magnification}}}}

\longrightarrow\sf\: \dfrac{v}{u} = \dfrac{-10}{-30}

\longrightarrow\sf\: \dfrac{v}{u} = \dfrac{1}{3}

\longrightarrow\large{\underline{\boxed{\sf{\red{m \:=\:0.3}}}}}

Answered by bhaktmahakalka128
7

AnswEr:

\large\bold{\underline{\sf{\red{\:\:Given\:\:}}}}

• f = -15cm [focal length of the lens]

• v = -10cm [Object Distance]

\large\bold{\underline{\sf{\red{Using\: Lens\: Formula}}}}

\dag\:\:\large{\underline{\boxed{\sf{\blue{\dfrac{1}{f} \:=\:\dfrac{1}{v}\:-\:\dfrac{1}{u}}}}}}

Concave lens always former virtual Image so, v is negative & f is also negative.

\longrightarrow\sf\:\dfrac{\:\:1}{-15} = \dfrac{\:\:1}{-10} - \dfrac{1}{u}

\longrightarrow\sf\: \dfrac{1}{u} = \dfrac{\:\;1}{-10} - \dfrac{\:\:1}{-15}

\longrightarrow\sf\: \dfrac{1}{u} = \dfrac{-3\:+\:2}{30}

\longrightarrow\sf\: \dfrac{1}{u} = \dfrac{-1}{30}

\longrightarrow\large{\underline{\boxed{\sf{\blue{u\:= \: -30\:cm}}}}}

____________________________

\diamond\:\:\bold{\underline{\sf{\red{Now\: Magnification}}}}

\longrightarrow\sf\: \dfrac{v}{u} = \dfrac{-10}{-30}

\longrightarrow\sf\: \dfrac{v}{u} = \dfrac{1}{3}

\longrightarrow\large{\underline{\boxed{\sf{\red{m \:=\:0.3}}}}}

Similar questions