Physics, asked by SarciJr, 9 months ago

a concave mirror has focal length 20cm and object at a distance of 16 cm from it. what is the distance of the image​

Answers

Answered by Cosmique
79

Answer:

  • position of image will be 80 cm behind the mirror.

Explanation:

Given that,

  • focal length of concave mirror, f = -20 cm
  • position of object, u = -16 cm

we need to find

  • position of image, v = ?

Using mirror formula

→ 1/f = 1/v + 1/u

→ 1/(-20) = 1/v  + 1/(-16)

→ 1/(-20) = 1/v + 1/(-16)

→ 1/v = 1/(-20) + 1/16

→ 1/v = ( -4 + 5 ) / 80

→ 1/v = 1 / 80

v = 80 cm

therefore,

position of image will be 80 cm behind the mirror.


Anonymous: Great ✭
Anonymous: Awesome ❤️
Answered by BrainlyConqueror0901
49

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:of\:the\:image=80\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Focal \: length(f) = -20 \: cm \\  \\ \tt:  \implies Object \: distance(u) = 16 \: cm \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Image \: Distance(v) = ?

• According to given question :

\tt\circ\:In\:concave\:mirror\:focal\:length\:is\:negative\\\\ \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{1}{f}  =  \frac{1}{v}   +  \frac{1}{u}  \\  \\  \tt:  \implies  \frac{1}{-20}  =  \frac{1}{v}  +  \frac{1}{16}  \\  \\ \tt:  \implies  \frac{1}{-20}  -  \frac{1}{16}  =  \frac{1}{v}  \\\\ \tt:\implies \frac{-1}{20}-\frac{1}{16}=\frac{1}{v}\\\\ \tt:\implies \frac{-(4-5)}{20} =\frac{1}{v}\\\\ \tt:  \implies  \frac{-4+ 5}{80}  =  \frac{1}{v}  \\  \\ \tt:  \implies   \frac{ 1}{80}  =  \frac{1}{v}  \\  \\  \green{\tt:  \implies v =   80 \: cm} \\  \\   \green{\tt \therefore  Image\:distance  \: is \: 80 \: cm}


Anonymous: Awesome ✪
BrainlyConqueror0901: thnx : )
Anonymous: Nice
BrainlyConqueror0901: thnx : )
Similar questions