Math, asked by karunanidhi, 1 year ago

A CONE IS IN SLANT HEIGHT 25 CM HAS A CSA 550 CM^2 FIND THE HEIGHT OF CONE AND ITS VOLUME.

Answers

Answered by manavjaison
4

Answer:

Radius = 7 cm

Volume = 1232 cm^{3}   

Step-by-step explanation:

Slant height, l = 25 cm

C.S.A. of cone = 550 cm^{2}


Now,

We know,

C.S.A. of cone = \pi rl

Now,

\pi rl = 550 cm^{2}

\frac{22}{7} × r × 25 = 550

⇒ r = \frac{550 × 7}{22 × 25}

r = 7 cm


Now,

l^{2} = r^{2} + h^{2}

or,

h^{2} = l^{2} - r^{2}

h = \sqrt{l^{2} -  r^{2} }

h = \sqrt{25^{2} - 7^{2} }

h = \sqrt{625 - 49}

h = \sqrt{576}

h = 24 cm


So,

Volume of a cone = \frac{1}{3} \pi r^{2} h cm^{3}  

                              =  \frac{1}{3} × \frac{22}{7} × 24 × 7^{2} cm^{3}  

                              = \frac{1}{3} × \frac{22}{7} × 24 × 7 × 7 cm^{3}  

                              =  \frac{1}{3} × 22 × 24 × 7 cm^{3}  

                              = 1 × 22 × 8 × 7 cm^{3}  

                              = 22 × 56 cm^{3}  

                              = 1232 cm^{3}  

             

Similar questions