Math, asked by Shaurya1111111, 1 year ago

A cone of height 24 cm has a curved surface area 550 cm². Find its volume


Shivam011: 770000/r² ho sakta hai?
Shivam011: sorry l²

Answers

Answered by ydharmendra888
15
Given height of the cone, h = 24 cm

Let r cm and l cm be the radius and slant height of the cone respectively.

Curved surface area of the cone = 550 cm2 (Given)

∴ πrl = 550 cm2

Squaring on both sides, we get

r 2 (r 2 + 576) = (175)2 = 30625

∴ r 4 + 576 r 2 – 30625 = 0

⇒ r 4 + 625 r 2 – 49 r 2 – 30625 = 0

⇒ r 2(r 2 + 625) – 49 (r 2 + 625) = 0

⇒ (r 2 + 625) (r 2 – 49) = 0

⇒ r 2 – 49 = 0 ( ∵ r 2 + 625 ≠ 0)

⇒ r 2 = 49

⇒ r = 7 ( ∵ Radius cannot be negative)

Radius of the cone = 7 cm

∴ Volume of the conditions

Thus, the volume of cone is 1232 cm3.

I think it is helpful for you If you like please mark as brainliest

ydharmendra888: it is not easy bro
Answered by Anonymous
23

Answer:

Let r cm be the radius of the base and l cm the slant height. Then,

  • l² = r² + 24²

\implies l² = r² + 576

\implies l = \sf\sqrt{r^2+576}

Now,

  • Curved surface area = 550 cm²

\implies πrl = 550

\sf\frac{22}{7}×r×\sf\sqrt{r^2+576}=550

r\sf\sqrt{r^2+576}=550×\sf\frac{7}{22}

\Rightarrow\sf\sqrt{r^2+576}=25×7

\Rightarrow \sf{r^2(r^2+576)=(25×7)^2}

\Rightarrow \sf{r^4+576r^2-(25^2×7^2)=0}

\Rightarrow \sf{r^4+576r^2-(625×49)=0}

\Rightarrow \sf{r^4+625r^2-49r^2-625×49=0}

\Rightarrow \sf{r^2(r^2-625)-49r^2-625×49=0}

\Rightarrow \sf{r^2(r^2+625)-49(r^2+625)=0}

\Rightarrow \sf{(r^2+625)(r^2-49)=0}

\Rightarrow \sf{r^2-49=0}

\Rightarrow r = 7

_____________

•°• \sf{Volume=}\sf\frac{1}{3}πr^2h=

\sf\frac{1}{3}×\sf\frac{22}{7}×7×7×24\:cm^3=1232\:cm^3

Similar questions