A cone of height 8m has a curved surface arean188.4 sq metre if pie =3.14, find the radius of its base
Answers
ANSWER:-
Given:
A cone of height 8m has a curved surface area an 188.4 if π=3.14.
To find:
The radius of its base.
Explanation:
Let the radius of its base be r m
We know that formula of the curved surface area: πrl
&
We know that formula of the slant height: l= √(r²+h²)
A/q
⇒ πrl= 188.4m²
⇒ 3.14×r×√(r²+8²)= 188.4
⇒ 3.14×r×√(r²+64)= 188.4
⇒ r×√(r²+64)=
⇒ r×√(r²+64)=
⇒ r×√(r²+64)=60
[ squaring both sides ]
⇒ [r√(r² +64)]²=[60]²
⇒ r²(r²+64)=3600
⇒ r^{4} +64r²= 3600
[ Factorise ]
⇒ r^{4} +64r² -3600=0
⇒ r^{4} +100r²-36r² -3600=0
⇒ r²(r²+100)-36(r²+100)=0
⇒ (r²+100)(r²-36)=0
⇒ r² +100=0 or r²-36=0
⇒ r²= -100 or r²=36
r²= -100 is negative value is not acceptable.
Therefore,
⇒ r² =36
⇒ r= √36
⇒ r= 6m.
Thus,
The radius of its base is 6m.
Given :-----
- CSA of cone = 188.4m²
- Height of cone = 8m
- pie = 3.14
- radius = ?
Formula used :-----
- CSA of cone = πrl
- l(slant height of cone) = √r²+h²
Putting above values in formula we get,
Hence , radius of cone is 6cm (Ans)
(Hope it helps you)