Math, asked by dilpalikala3800, 1 year ago

A cone of height 8m has a curved surface arean188.4 sq metre if pie =3.14, find the radius of its base

Answers

Answered by Anonymous
18

ANSWER:-

Given:

A cone of height 8m has a curved surface area an 188.4 if π=3.14.

To find:

The radius of its base.

Explanation:

Let the radius of its base be r m

We know that formula of the curved surface area: πrl

&

We know that formula of the slant height: l= √(r²+h²)

A/q

⇒ πrl= 188.4m²

⇒ 3.14×r×√(r²+8²)= 188.4

⇒ 3.14×r×√(r²+64)= 188.4

⇒ r×√(r²+64)= \frac{188.4*100}{3.14*100}

⇒ r×√(r²+64)=\frac{18840}{314}

⇒ r×√(r²+64)=60

[ squaring both sides ]

⇒ [r√(r² +64)]²=[60]²

⇒ r²(r²+64)=3600

⇒ r^{4} +64r²= 3600

[ Factorise ]

⇒ r^{4} +64r² -3600=0

⇒ r^{4} +100r²-36r² -3600=0

⇒ r²(r²+100)-36(r²+100)=0

⇒ (r²+100)(r²-36)=0

⇒ r² +100=0   or   r²-36=0

⇒ r²= -100     or    r²=36

r²= -100 is negative value is not acceptable.

Therefore,

⇒ r² =36

⇒ r= √36

⇒ r= 6m.

Thus,

The radius of its base is 6m.

Answered by RvChaudharY50
38

Given :-----

  • CSA of cone = 188.4m²
  • Height of cone = 8m
  • pie = 3.14
  • radius = ?

Formula used :-----

  • CSA of cone = πrl
  • l(slant height of cone) = r²+

Putting above values in formula we get,

3.14 \times r \times  \sqrt{ {r}^{2}  +  {8}^{2} }  = 188.4 \\  \\ r \times  \sqrt{ {r}^{2}  + 64}  =  \frac{188.4}{3.14}  = 60 \\  \\ squaring \: both \: sides \: we \: get \\  \\  {r}^{2} (r^{2}  + 64) = 3600 \\  \\  {r}^{4}  + 64 {r}^{2}  - 3600 = 0 \\  \\ let \:  {r}^{2}  = x \\  \\  {x}^{2}  + 64x - 3600 = 0 \\  \\  {x}^{2}  + 100x - 36x - 3600 = 0 \\  \\ x(x + 100) - 36(x + 100) = 0 \\  \\ (x + 100)(x - 36) = 0 \\  \\ x =  - 100 \: or \: 36 \\  \\  {r}^{2}  = 36 \\  \\ r = 6

Hence , radius of cone is 6cm (Ans)

(Hope it helps you)

Similar questions