Math, asked by uk7770391, 11 months ago

a cone of radius 10 cm is cut into two part of a plan through the mindpiont. Of its vertical axis parallel to the base find the ratio of the volume of the smaller cone to the frustum of the cone​

Answers

Answered by Anonymous
73

AnswEr :

\:\bullet\:\sf\ Radius \: of \: big \: cone = 10cm

\:\bullet\:\sf\ Height \: of \: big \: cone = H

 \rule{100}{1}

\:\bullet It is given that cone is divided through a plane, at midpoint which shows that big cone is divided into a "small cone" and a "frustum".

\:\bulletAlso, the cone id divided from midpoint, so height of small cone and frustum will be equal and radius of small cone is half of big cone.

\underline{\dag\:\textsf{Let's \: head \: to \: question \: now:}}

\blacksquare\underline{\textsf{ Volume \: of \: frustum \: formed :}}

\:\bullet\:\sf\ Height \: of \: frustum(h)= \frac{H}{2}

\:\bullet\:\sf\ Radius \: of \: upper \: end(r_1) = 5cm

\:\bullet\:\sf\ Radius \: of \: lower \: end(r_2)= 10cm

 \rule{100}{1}

\normalsize\star{\boxed{\sf{Volume \: of \: frustum = \dfrac{1}{3} \pi h[r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}] }}}

\normalsize\ : \implies\sf\ V_{f} = \frac{1}{3} \times\ \pi \times\ \frac{H}{2} \times\ [(10)^2 + (5)^2 + 10 \times\ 5] \\ \\ \normalsize\ : \implies\sf\ V_{f} = \frac{1}{3} \times\ \pi \times\ \frac{H}{2} \times\ [100 + 25 + 50] \\ \\ \normalsize\ : \implies\sf\ V_{f} = \frac{1}{3} \times\ \pi \times\ \frac{H}{2} \times\ [175]

\normalsize\ : \implies{\underline{\boxed{\sf \green{ V_{f} = \frac{1}{3} \times\ \pi \times\ \frac{H}{2} \times\ [175] }}}}

 \rule{100}2

\blacksquare\underline{\textsf{ Volume \: of \: small \: cone \: formed :}}

\:\bullet\:\sf\ Height \: of \: cone(h)= \frac{H}{2}

\:\bullet\:\sf\ Radius \: of \: small \: cone  \: end(r) = 5cm

 \rule{100}{1}

\normalsize\star{\boxed{\sf{Volume \: of \: cone_{s} = \dfrac{1}{3} \pi r^2h }}}

\normalsize\ : \implies\sf\ V_{c} = \frac{1}{3} \times\ \pi \times\ 5 \times\ \frac{H}{2} \\ \\ \normalsize\ : \implies\sf\ V_{c} = \frac{1}{3} \times\ \pi \times\ 25 \times\ \frac{H}{2}

\normalsize\ : \implies{\underline{\boxed{\sf \green{V_{c} = \frac{1}{3} \times\ \pi \times\ 25 \times\ \frac{H}{2} }}}}

 \rule{100}2

\blacksquare\underline{\textsf{ Ratio \: of \: volumes \: of \: smaller \: cone \: and \: frustum :}}

\normalsize\star{\boxed{\sf{Ratio \: of \: volumes = Cone_{volume} : Frustum_{volume} }}}

\normalsize\ : \implies\sf\ R_{v} = \frac{Volume \: of \: cone}{Volume \: of \: frustum} \\ \\ \normalsize\ : \implies\sf\ R_{v} = \frac{\cancel{\frac{1}{3}} \times\ \cancel{\pi} \times\ 25 \times\ \cancel{\frac{H}{2}} }{\cancel{\frac{1}{3}} \times\ \cancel{\pi} \times\ \cancel{\frac{H}{2}} \times\ 175} \\ \\ \normalsize\ : \implies\sf\ R_{v} = \frac{\cancel{25}}{\cancel{175}} \\ \\ \normalsize\ : \implies\sf\ R_{v} = \frac{1}{7} \\ \\ \normalsize\ : \implies\sf\ R_{v} = 1 : 7

\normalsize\ : \implies{\underline{\boxed{\sf \purple{Ratio \: of \: volumes \: of \: smaller \: cone \: and \: frustum \: = 1 :7}}}}

Attachments:
Answered by Anonymous
8

Answer:

★ Ratio will be 1:7 ★

Step-by-step explanation:

Given:

  • Radius (BC) of bigger cone is 10 cm
  • Height of bigger cone is OB (2h)

To Find:

  • Ratio of volume of smaller cone to the frustum of the cone

Solution: When we cut the cone into two parts by the plane through the mid point of its vertical axis parallel to its base then we will get a smaller cone and a frustum. ( See figure)

'r' = AD is the radius of base of the smaller cone

'h' = OA is the height of smaller cone = AB = Height of the frustum = 1/2 of OB

'2h' = OB ( OA = OB)

Now, In OAD & OBC we have,

A = A = 90°

OAD = OBC [ Corresponding angles because AD is parallel to BC ]

OAD ~ OBC by AA similarity

∵The corresponding sides of two similar triangles are proportional to each other

OA / OB = AD / BC

h / 2h = r / R

r / R = 1 / 2

r = 1 / 2 x R

r = 1 / 2 x 10 .....( Radius is 10 cm)

r = 5 cm

Volume of cone = 1/3 π(r)²h

Volume of smaller cone = 1/3π(5)²h............(1)

Volume of bigger cone = 1/3π(10)²2h.........(2)

† Volume of frustum will be = Volume of bigger cone volume of smaller cone

Volume of frustum = 1/3π(10)²2h 1/3π(5)²h

\small\implies{\sf } 1/3πh ( 200 25 )

\small\implies{\sf } 1/3πh x 175 .........(3)

★ From equation (1) and (3) we will get

The ratio of the volume of the smaller cone to the volume of the frustum ★

Volume of smaller cone / Volume of frustum

\small\implies{\sf } 1/3π(5)²h / 1/3πh(175)

After calculation and cancelling all similar terms, we will get

\small\implies{\sf } 25 / 175

\small\implies{\sf } 1 / 7

Hence, The ratio of the volume of the smaller cone to the frustum of the cone will be 1:7

Attachments:
Similar questions