Math, asked by arpitsahu231, 1 month ago

A CONE OF RADIUS 3 CM AND THE HEIGHT OF 4 CM, WHEN ITS SURFACE IS DEVELOPED FORMS A SECTOR. WHAT IS THE VALUE OF THE INCLUDED ANGLE OF THE SECTOR? Select one: a. 1129 b. 120° c. 205 d. 216​

Answers

Answered by VaibhavSR
0

Answer: 216°

Step-by-step explanation:

  • Given,r=3 cm and h=4 cm
  • Let l be the slant height of the cone. Then,

        l^{2}=3^{2}+4^{2}

    ⇒l^{2}= 9+16

    ⇒l=\sqrt{25}

     ∴ l = 5cm

  • Area of the curved surface = πrl

                                                        = \pi *3*5

                                                        = 15\pi\ cm^{2}

  • Area of the sector=θ/360° (\pi r^{2} )
  • According to question, θ/360° (\pi r^{2} )=15\pi\ cm^{2}  

                                           ⇒ θ=\frac{15*360}{25}       [∵ slant height=radius]

                                           ⇒ θ=3×72

                                          ∴  θ=216°

  • Hence,the angle of sector is 216°.

Similar questions