Math, asked by 10DHARMAM, 1 year ago

A conical vessel of radius 6 cm and height 8 cm is completely filled with water .A sphere is lowered into the water such that when it touches the sides, it is just immersed .What fraction of water overflows?

Answers

Answered by jsnpkhatri
148

Answer:1

Step-by-step explanation:

Attachments:
Answered by SerenaBochenek
41

Given:

Radius, PX

r = 6 cm

Height, PZ

h = 8 cm

To Find:

Fraction of overflowed water = ?

Solution:

According to the given values,

PZ=\sqrt{(8)^2+(6)^2}

⇒    =\sqrt{64+36}

⇒    =10 \ cm

Now,

Volume = \frac{1}{3}\pi \ r^2h

⇒           =\frac{1}{3}\times \pi\times 6\times 6\times 8

⇒           =96\pi

Therefore,

Sin \theta=\frac{OM}{OZ} =\frac{PX}{PZ}

            \frac{h}{8-r} =\frac{6}{10}

On applying cross-multiplication, we get

⇒          10r=48-6r

⇒          10r+6r=48

⇒           16r=48

⇒              r=\frac{48}{16}

⇒              r=3

Now,

Volume of the sphere = \frac{4}{3}\pi \times 3\times 3\times 3

                                     = 36\pi

Fraction of overflowed water will be:

=\frac{36\pi}{96\pi}

=3:8

Similar questions