Physics, asked by Parvani5220, 1 year ago

A convex lens has 20 cm focal length in air. What will be its focal length when the lens is immersed in a liquid of refractive indec 1.63. Given

Answers

Answered by bmskr2004
0

See the question is correct are rong if it is correct apply n21=n1/n2

Answered by SerenaBochenek
1

Let us consider the radius of curvature of the convex lens are denoted as R_{1}\ and\ R_{2}\ respectively .

Let the focal length of the convex lens in air and liquid are denoted as f_{a}\ and\ f_{l}\ respectively

The refractive index of the liquid \mu_{l} =1.63

The lens was initially in air.

As per lens maker's formula,

 \frac{1}{ f_{a}}=[\mu_{g}- 1][ \frac{1}{R_{1}}- \frac{1}{ R_{2}}]

Let it be the equation 1. 

Now the lens is put inside the liquid.

The refractive index of the lens in air [\mu_{g}]=1.5

The refractive index of the lens in liquid is = \mu_{g}^l

                                                                      = \frac{\mu_{g}} { \mu_{l}}

                                                                      = \frac{1.5}{1.63}

                                                                      = 0.92

Putting lens maker's formula again, we get-

\frac{1}{ f_{l}}=[ \mu_{g}^l-1][ \frac{1}{ R_{1}}- \frac{1}{R_{2}}]

Let it be the equation 2

Dividing 1 by 2, we get-

                                   \frac{f_{l}} { f_{a}}= \frac{\mu_{g}-1} { \mu_{g}^l-1}

                                   f_{l} =f_{a} *\frac{(1.5-1)}{(0.92-1)}

                                           =20*(-0.54378)\ cm

                                           =\ -10.87\ cm          [ans]

The negative sign indicates that the lens will behave just like a concave lens now.


Similar questions