Math, asked by rahul17bunny, 5 months ago

a copper sphere of diameter 6 cm is melted and recast into a right circular cone of radius 6 cm. then the height of the cone is​

Answers

Answered by Mysterioushine
82

Given :

  • Diameter of the copper sphere = 6 cm
  • Radius of the recast right circular cone = 6 cm

To Find :

  • The height of the recast right circular cone

Solution :

Radius of sphere will be 6/3 cm = 2 cm. {Since , 2(radius) = diameter}

Here , In this case ;

  • Volume of the Sphere will be equal to the volume of recast right circular cone

Volume of sphere is given by ,

 \\  \star \: {\boxed{\purple{\sf{Volume_{(sphere)} =  \frac{4}{3}\pi {r}^{3}  }}}} \\  \\

Here ,

  • r is radius of the sphere

Substituting the values we have ,

 \\   : \implies \sf \: Volume_{(sphere)} =  \frac{4}{3}  \times  \frac{22}{7}  \times  {(3)}^{3}  \\  \\

 \\   : \implies \sf \: Volume_{(sphere)} =  \frac{4}{3}  \times  \frac{22}{7}  \times 27 \\  \\

 \\   : \implies \sf \: Volume_{(sphere)} =  \frac{4 \times 22 \times 9}{7}  \\  \\

 \\   : \implies{\underline{\boxed{\red {\mathfrak{ Volume_{(sphere)} =  \frac{792}{7} }}}}} \:  \\  \\

\qquad━━━━━━━━━━━━━━━━━

Volume of a cone is given by ,

 \\  \star \: {\boxed{\purple{\sf{Volume_{(cone)} =  \frac{1}{3}\pi {r}^{2}h  }}}} \\  \\

Here ,

  • r is radius of cone
  • h is height of cone

Substituting the values we have ,

 \\    : \implies \sf \: Volume_{(cone)} =  \frac{1}{3}  \times  \frac{22}{7}  \times  {(6)}^{2}  \times h \\  \\

 \\   : \implies \sf \: Volume_{(cone)} =  \frac{1}{3}  \times  \frac{22}{7}  \times 36 \times h \\  \\

 \\   : \implies \sf \: Volume_{(cone)} =  \frac{22 \times 12 \times h}{7}  \\  \\

 \\   : \implies{\underline{\boxed{\red {\mathfrak{Volume_{(cone)} =  \frac{264h}{7} }}}}} \\  \\

\qquad━━━━━━━━━━━━━━━━━

Now , Applying the condition ;

 \\   : \implies \sf \:  \frac{792}{7}  =  \frac{264h}{7}  \\  \\

 \\   : \implies \sf \: 792 = 264h \\  \\

 \\  :  \implies \sf \: h =  \frac{792}{264} \\  \\

 \\   : \implies{\underline{\boxed{\pink {\mathfrak{h = 3 \: cm}}}}} \:  \bigstar \\  \\

 \\  \therefore{\underline{\sf{Hence \:  ,  \: The \:  height  \: of  \: the \:  right \:   \: circular \:  cone \:  is \:  \bold{ 3 cm}}}}

Answered by Anonymous
59

Answer:

Given :-

  • Diameter of Copper sphere = 6 cm
  • Radius of the recast right circular cone = 6 cm

To Find :-

Height

Solution :-

Firstly let's find radius of copper wire

As we know that

 \bf \: Radius = \dfrac{ Diameter}2

 \sf \implies Radius =  \dfrac{6}{2}

 \sf \implies \: Radius = 3 \: cm

Now,

Let's find Volume of Sphere

As we know that

 \bf \pink {Volume =  \dfrac{4}{3} \pi \:  { r}^{3} }

 \sf \implies \: Volume =  \frac{4}{3}  \times  \frac{22}{7}  \times  {3}^{3}

 \sf \implies \: Volume =  \cancel \frac{4}{3}  \times  \frac{22}{7}  \times \cancel{ 27}

 \sf \implies \: Volume =   \dfrac{4 \times 22 \times 9}{7}

 \sf \implies \: Volume =  \dfrac{792}{7} cm

Now,

 \bf \red{Volume =  \dfrac13 \pi   {r}^{2} h}

 \sf \implies Volume =  \frac{1}{3}  \times  \frac{22}{7}  \times  {6}^{2}  \times h

 \sf \implies Volume =  \frac{1}{3}  \times  \frac{22}{7}  \times 36 \times h

 \sf \implies Volume =  \dfrac{22 \times 12 \times h}{7}

 \sf \implies Volume =\dfrac{ 264 \: h}{7}

 \dag{\mathfrak { \underline  {According  \: to  \: Question}}}

 \tt \: Volume \: of \: cone = Volume \: of \: sphere

 \sf \:  \dfrac{792}{7}  =  \dfrac{264h}{7}

By cross multiplication

 \sf \: 792 \times 7 = 264h \times 7

 \sf \: 5544= 1848h

 \sf \: h = \cancel{  \dfrac{5544}{1848} }

 \mathfrak{h = 3 \: cm}

Hence :-

Height of cone is 3 cm

Similar questions