Math, asked by ADheeraj33, 11 months ago

Find the equation of the tangent on the point

30 degrees (Parametric value of theta) on the circle
 {x}^{2}  +  {y}^{2}  + 4x  + 6y  - 39 = 0

Answers

Answered by Agastya0606
3

Given: The equation of circle x^2 + y^2 + 4x + 6y - 39 = 0

To find: The equation of the tangent on the point  30 degrees.

Solution:

  • Now we have given the equation of circle:

                x^2 + y^2 + 4x + 6y – 39 = 0

  • From the equation, we can say that:

                g = 2 and f = 3

                r = √(4 + 9 + 39)

                r = √52

                r = 2√3  

  • We have given the angle as 30 degrees.
  • So equation of tangent is:

                (x+g) cos theta + (y+f) sin theta = r

                (x+2)√3/2 + (y+3)1/2 = 2√13

  • Simplifying this, we get:

                √3x + 2√3 + y + 3 = 4√13

                √3x + y + (3 + 2√3 - 4√13)  = 0

Answer:

         So the equation of the tangent is √3x + y + (3 + 2√3 - 4√13)  = 0

Similar questions