Physics, asked by shivamtyagi7204, 9 months ago

A copper wire has a diameter 0.5 mm and resistivity 1.6× 10^-8

ohm m.

(i) What will be the length of this wire to make the resistance of 12 Ohm

(ii) How much will be the resistance of another copper wire of same length but half the

diameter?​

Answers

Answered by Anonymous
15

Given:

✏ Diameter of cross-section = 0.5mm

✏ Resistivity = \rm{1.6×10^{-8}\Omega{m}}

To Find:

  1. Length of wire to make the resistance of 12\Omega
  2. Resistance of another wire of same length but half the diameter.

Formula:

✏ Formula of resistance is given by...

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \star \:  \underline{ \boxed{ \bold{ \rm{ \pink{R =   \frac{ \rho \times l}{A}}}}}} \:  \star

✏ R denotes resistance of wire.

\rho denotes resistivity of wire

✏ l denotes length of wire

✏ A denotes area of cross-section

Calculation:

(1) For length of wire

 \implies \rm \: 12 =  \frac{ 1.6 \times {10}^{ - 8}  \times l}{\pi ({0.5 \times  {10}^{ - 3}) }^{2} }  \\  \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \red{l = 588 \: m}}}}} \:  \star

(2) Resistance of other wire

 \implies \rm \: R \propto \frac{1}{ {r}^{2} }  \\  \\  \therefore \rm \:  \frac{R_1}{R_2}  =  \frac{ {r_2}^{2} }{ {r_1}^{2} }  = 4 \\  \\  \therefore \rm \:  \frac{12}{R_2}  = 4 \\  \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \purple{R_2 = 3 \Omega}}}}} \:  \star

Similar questions