India Languages, asked by KiranGill3097, 11 months ago

A=((cosθ&sinθ@-sinθ&cosθ)) எனில் AA^T=1 என காட்டுக

Answers

Answered by Anonymous
1

Answer:

 \sin {}^{2}  \alpha  +  \cos { \beta}^{2}  = 1

Answered by steffiaspinno
0

விளக்கம்:

A =\left[\begin{array}{cc}\cos \theta & \sin \theta \\-\sin \theta & \cos \theta\end{array}\right]

நிருபிக்கவேண்டியவை

A A^{T}= 1

A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\-\sin \theta & \cos \theta\end{array}\right]

A^{T}=\left|\begin{array}{cc}\cos \theta & -\sin \theta \\\sin \theta & \cos \theta\end{array}\right|

AA^T=\left[\begin{array}{ccc}\cos \theta & \sin \theta \\-\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & -\sin \theta \\\sin \theta & \cos \theta\end{array}\right]

       = \left[\begin{array}{ll}1 & 0 \\0 & 1\end{array}\right]  

        = 1 = I

A A^{T}= 1 என நிருபிக்கபட்டது.

Similar questions