a cos theta+b sin theta=m and a sin theta-b cos theta=n now prove that m squire+n squire=a squire+b squire
Answers
Answered by
4
Answer:
Step-by-step explana
©= Using this as theta
acos©+bsin©=m
Asin©-bcos©=n
m^2+n^2
Putting value of m and n in it
(acos©+bsin©)2+(asin©-bcos©)2
=a2cos2©+b2sin2©+2absin©cos©+a2sin©+b2cos2©-2absin©cos©
=a2cos©+b2sin2©+a2sin2©+b2cos2©
Arranging the terms
So,a2cos2©+a2sin2©+b2sin2©+b2cos2©
Takinga2 and b2 common
a2(cos2©+sin2©)+b2(sin2©+cos2©)
a2+b2 = LHS
Hence proved
Similar questions