Math, asked by Anonymous, 4 months ago





a cube has a lateral surface area of 2400 sq m. find the surface area of cub

{ \sqrt[?]{?} \times \frac{?}{?} }^{?}
?

?

×
?
?


?




​​

Answers

Answered by Anonymous
2

Given :

Lateral surface area of cube = 2400 sq.m

To Find :

The surface area of cube

Solution :

Lateral surface area of cube is givem by ,

 \\  \star \: {\boxed{\red{\sf{LSA_{(cube)} = 4 {s}^{2} }}}} \\  \\

Here ,

s is side of the cube

We have ,

LSA = 2400 sq.m

Substituting the value we have in the formula ,

 \\  :  \implies \sf \:2400 \:  {m}^{2}   = 4 {s}^{2}  \\  \\

 \\  :  \implies \sf \:   \frac{2400  \: {m}^{2} }{4}  =  {s}^{2}  \\  \\

 \\   : \implies \sf \: 600 \:  {m}^{2}  =  {s}^{2}  \\  \\

 \\   : \implies \sf \: s =  \sqrt{600 \:  {m}^{2} }  \\  \\

 \\   : \implies{\underline{\boxed{\purple{\mathfrak{s = 10 \sqrt{6}  \: m}}}}} \\  \\

Now , Formula for surface area of cube is ,

 \\  \star \: {\boxed{\red{\sf{TSA_{(cube)} = 6 {s}^{2} }}}} \\  \\

Here ,

a is side

Now ,

 \\   : \implies \sf \:TSA_{(cube)} = 6 {(10 \sqrt{6} \: m) }^{2}   \\  \\

 \\   : \implies \sf \:TSA_{(cube)} = 6(600\:  {m}^{2} ) \\  \\

 \\   : \implies {\underline{\boxed{\pink{\sf{TSA_{(cube)} =3600 \:  {m}^{2}  }}}}}  \: \bigstar \\  \\

Hence ,

The surface area of the cube whose lateral surface area is 2400 sq.m is 3600 sq.m

Answered by roshannai728
0

Step-by-step explanation:

फाइन gdhdhdh74beu3u bshdhdbbxbbdbdbbdbdbdhehbsbsbebsheheheuehue7 ehheye et why she's egehwjw6sbsud Shah's she eb6ebeyehe whbwhwh6wbwbwh6

Similar questions