Math, asked by dakshyadav146, 7 months ago

A cube is painted and cut in 216 smaller and
identical cubes.
How many smaller cubes have exactly three
surfaces painted?​

Answers

Answered by ShubhangBhatia
1

Answer:

V(Big cube) = 216 × V (small cube)

A ^3 = 216a ^3

(A/216) ^3 = a

A/6= a

Let side of Big cube = 6 unit

∴ side of small cube = 1 unit.

∴ zero side printed ⇒(n−2) ^3

=(6−2)^3

=4 ^3

=64 .

64 smaller cubes have exactly 3 surfaces painted.

(mark me as brainliest)

Similar questions