A cube of edge 14cm. is surmounted by a cone of maximum diameter and height 14cm Find the
total surface area of the shape so formed.
Answers
Answer:
6 X 14^2= 6X196=1176 we get 1176 sq.cm
Answer:
Surface area of the shape so formed is 1520 square centimeter .
Step-by-step explanation:
Given as :
The measure of each edge of cube = 14 cm
The cube is surmounted by cone
The height of cone = h = 14 cm
The diameter of cone = d = 14 cm
So, The radius of cone = r = =
Or, r = 7 cm
∵ Total surface area of cone = π × r × l + π × r²
where l is the slant height
l =
Or, l = = 15.65 cm
So, slant height = l = 15.65 cm
Or, Total surface area of cone = 3.14 × 7 × 15.65 + 3.14 × 7²
Or, Total surface area of cone = 343.987 + 153.86
Or, Total surface area of cone = 497.847 cm²
Again
Total surface area of cube = 6 × side²
Or, Total surface area of cube = 6 × 14²
Or, Total surface area of cube = 1176 cm²
Again
The circle thus formed , so the area of circle formed = 3.14 × 7² = 153.86 cm²
The area of circle = 153.86 cm²
Surface area of the shape so formed = (surface area of cone - area of circle) + surface area of cone
Or, Surface area of the shape so formed = (1176 cm² - 153.86 cm² ) + 497.847 cm²
Or, Surface area of the shape so formed = 1519.9 cm²
Hence, Surface area of the shape so formed is 1520 square centimeter . Answer