Math, asked by Dhruvkarhe, 2 months ago

A cube of side 42 cm contains a sphere touching its sides. Find the volume in cubic cm of the gap in
between?

Answers

Answered by SachinGupta01
8

 \bf \:  \underline{Given} :

 \sf \: A  \: cube  \: of \:  side  \: 42 \:  cm  \: contains \:  a  \: sphere \:  touching  \: its  \: sides.

 \bf \:  \underline{To \:  find} :

 \sf \: Find  \: the  \: volume \:  in  \: cubic  \: cm  \: of  \: the \:  gap  \: in  \: between ?

 \bf \:  \underline{Formula \:  to \:  be \:  used} :

 \implies \sf Volume  \: of  \: cube = (a)^{3}

 \implies \sf Volume  \: of  \: sphere =  \dfrac{4}{3}  \pi r^{3}

 \bf \:  \underline{\underline{Solution}}

To find the volume of gap between cube and sphere, first of all we need to find the volume of both, cube and sphere.

 \sf \: Finding  \: the  \: volume  \: of  \: cube,

 \implies \sf Volume  \: of  \: cube = (a)^{3}

 \implies \sf Volume  \: of  \: cube = (42)^{3}

 \red{\sf \implies  Volume  \: of  \: cube = 74088 \: cm^{3} }

 \sf \: Now, finding \:  the \:  volume \:  of \:  sphere,

 \sf \: Before \:  putting \:  the \:  values, we  \: need \:  to \:  find \:  the  \: radius.

 \sf\implies Diameter \:  of  \: the \:  sphere  \: (2r) = 42 \:  cm

 \sf\implies Radius  \: of \:  the \:  sphere  \: (r) =  \dfrac{42}{2}

 \red{ \sf\implies Radius \:  of \:   the  \: sphere = 21  \: cm}

 \bf \:  \underline{Now},

 \implies \sf Volume  \: of  \: sphere =  \dfrac{4}{3}  \pi r^{3}

 \implies \sf   \dfrac{4}{3}  \times   \dfrac{22}{7}   \times 21^{3}

 \implies \sf   \dfrac{4}{3}  \times   \dfrac{22}{7}   \times 9261

 \implies \sf   \dfrac{88}{21} \times 9261

 \implies \sf   88 \times 441

 \implies \sf   38808

 \red{ \sf  \implies Volume  \: of  \: sphere =  38808 \: cm^{3} }

Now, we have to subtract the volume of cube and volume of sphere to find the volume of gap between them.

\sf \implies   74088 \: cm^{3}  - 38808 \: cm^{3}

\red{\sf \implies 35280 \:  cm^{3}}

 \underline {\boxed{ \pink{ \sf \: Hence, volume  \: of  \: gap  \: between  \: them  \: is  \: 35280  \: cm ^{3}}}}

Similar questions