Math, asked by pranjal5168, 10 months ago

A cubical box has each edge 10 cm and a cuboidal box is 5 cm wide, 10 cm long and 6 cm high. Which box has the smaller total surface area ?​
cubical box

cuboidal box

Answers

Answered by ButterFliee
8

\huge{\underline{\underline{\bf{\blue{GIVEN:-}}}}}

  • Edge of a cubical box = 10 cm
  • Length of the coboidal box = 10 cm
  • Breadth of the cuboidal box = 5 cm
  • Height of the cuboidal box = 6 cm

\huge{\underline{\underline{\bf{\blue{TO\:FIND:-}}}}}

Find the T.S.A. of cubical and cuboidal box and also find which box have smaller surface area = ?

\huge{\underline{\underline{\bf{\blue{FORMULA\: USED:-}}}}}

\large{\boxed{\bf{\red{T.S.A. of cube = 6{a}^{2}}}}}

\large{\boxed{\bf{\red{T.S.A. of cuboid = 2(lb + bh + hl)}}}}

\huge{\underline{\underline{\bf{\blue{SOLUTION:-}}}}}

Firstly, we need to find the surface area of cubical box

Putting the values in the formula, we get

\large\bf{T.S.A. of cube = 6{a}^{2}}

\implies\bf{T.S.A. = 6{(10)}^{2}}

\implies\bf{T.S.A. = 6\times 100}

\implies\large\bf\red{T.S.A. = 600\: {cm}^{2}}

Thus, the T.S.A. of cubical box is 600 cm²

Now, we have to find the surface area of cubical box

Putting the values in the formula, we get

\large\bf{T.S.A. of cuboid = 2(lb+bh+hl)}

\implies\bf{T.S.A. = 2(10 \times 5 + 5 \times 6 + 6 \times 10)}

\implies\bf{T.S.A. = 2(50 + 30 + 60)}

\implies\bf{T.S.A. = 2\times 140}

\implies\large\bf\red{T.S.A. = 280\: {cm}^{2}}

Thus, the T.S.A. of cuboidal box is 280 cm²

Hence, the Surface area of cuboidal box is smaller..

Answered by Vamprixussa
17

Given

\bold{Length \ of \ the \ cube} = 10 \ cm

\bold{Length\ of \ the \ cuboid} = 10 \ cm

\bold{Width\ of \ the \ cuboid} = 5 \ cm

\bold{Height \ of \ the \ cuboid} = 6 \ cm

SOMETHING YOU NEED TO KNOW

TSA of a cube = 6a²

TSA of a cuboid = 2(lb + bh + hl)

\implies 6a^{2}\\ \implies 6 * 10*10\\\implies 600 \ cm^{2}\\ \\\boxed{\boxed{\bold{Therefore, \ the \ total \ surface \ area \ of \ the \ cube \ is \ 600 \ cm^{2}}}}}

\implies 2(lb+bh+hl)\\\implies 2(10*5+5*6+6*10)\\\implies 2(50+30+60)\\\implies 2(140)\\\implies 280 \ cm^{2} \\\\\boxed{\boxed{\bold{Therefore, \ the \ total \ surface \ area \ of \ the \ cuboid \ is \ 280 \ cm^{2}}}}}

=> The Cube Has More Surface Area

                                                               

Similar questions