Math, asked by parniman8talde5, 1 year ago

A cubical box side 12 cm has hemispHere dome like structuee top having maximum diameter find the tsaof solid

Answers

Answered by umammu922
11
r=6 cm
TSA of cube=6*12*12
                    =144*6
                    =864 sq.cm
TSA of hemisphere=3*22/7*6*6
                               =339.43 sq.cm 
TSA of solid=864+339.43
                    =1203.43 sq.cm

poonmshruti2001: that's not the right way. I 'm sorry
Answered by gtessa350
2

Answer:

977.2 cm^{2}

Step-by-step explanation:

Cube

a = 12 cm

Hemisphere

r = \frac{12}{2} cm

 = 6 cm

The solid is made up of cube and hemisphere, with the base of the hemisphere partially covering one side leaving four corners of the side and the rest three sides bare. To find the Total Surface Area (T.S.A) we have the area the objects visible to us.

∴ T.S.A of the solid = C.S.A of hemisphere + T.S.A of cube - Area of the base  

                                   of the hemisphere  

                                = 2πr^{2} + 6a^{2} - πr^{2}

                                = πr^{2} + 6a^{2}

                                = \frac{22}{7} × 6^{2} + 6 × 12^{2}

                                = 113.14 + 864

                                = 977.14 cm^{2}

Similar questions