Math, asked by mathew22faz, 6 months ago

A cuboid is of dimensions 60cm × 40cm × 20cm.How many small cubes with side 4cm can be placed in the given cuboid? ​

Answers

Answered by vishrutha06
1

Answer:

750 cubes

Step-by-step explanation:

So here ,

Volume of the cuboid- 60×40×20

Volume of one small cube - a cube

4×4×4

Number of cubes =Volume of cuboid/Volume of cube

So ,

60×40×20/4×4×4

= 48000/64

=750 cubes

Hence 750 cubes can be placed in the given cuboid .

Hope it helped !!!

Answered by shaktisrivastava1234
10

 \Huge \underline  \red{{\fbox{Answer}}}

 \large \underline{ \underline {\red {\frak{Given::}}}}

 \sf \mapsto{Dimension \: of \: cuboid  \: is  \: 60cm \times 40cm \times 20cm.}

 \sf  \mapsto{Side  \: of  \: small  \: cube \:  is  \: 4cm.}

 \large \underline{ \underline {\red {\frak{To \:  find::}}}}

 \sf \leadsto{No. \: of \:  small  \: cube \:  placed \:  in \: large \:  cuboid.}

 \large \underline{ \underline {\red {\frak{Formula \:  required::}}}}

  {\pink{\star}} \underline{\boxed{\bf{Volume  \: of \:  cuboid=lbh }}}  {\pink{ \star}}

  {\pink{\star}} \underline{\boxed{\bf{Volume  \: of \:  cube={l}^3 }}}  {\pink{ \star}}

  {\pink{\star}} \underline{\boxed{\bf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{Volume \:  of \:  large \:  cuboid}{ Volume  \: of  \: small  \: cube}  }}}  {\pink{ \star}}

 \large \underline{ \underline {\red {\frak{According \:  to  \: Question::}}}}

{ \implies{\sf{Volume \: of \:  cuboid=lbh }}}

{ \implies{\sf{Volume  \: of \:  cuboid=60cm×40cm×20cm }}}

{ \implies{\sf{Volume  \: of \:  cuboid=48,000 {cm}^{3} }}}

\implies{\sf{Volume \: of \:  cube={l}^{3} }}

\implies{\sf{Volume  \: of \:  cube={(4)}^{3}  }}

\implies{\sf{Volume  \: of \:  cube=4cm \times4cm\times4cm}}

\implies{\sf{Volume  \: of \:  cube=64{cm}^{3}  }}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{Volume \:  of \:  large \:  cuboid}{Volume  \: of  \: small  \: cube}  }}}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{48,000 {cm}^{3} }{64{cm}^{3} }  }}}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid=  \cancel{\frac{48,000 {cm}^{3} }{64 {cm}^{3} }}  = 750cubes}}}

 \large \underline{ \underline {\red {\frak{Know \:  more::}}}}

 \boxed{ \begin{array}{|l|l| } \hline \sf T.S.A. \:  of  \: cuboid& \sf2(lb + bh + hl) \\  \hline   \sf L. S. A.  \: of \: cuboid& \sf2h(l + b) \\  \hline \sf Diagonal \:  of \:  cuboid&   \sf\sqrt{ {l}^{2} +  {b}^{2} +  {h}^{2}} \\  \hline \sf T.S.A. \:  of  \: cube& \sf 6( {l}^{2} )  \\  \hline \sf L. S. A.  \: of \: cube& \sf4( {l}^{2} ) \\  \hline\sf Diagonal \:  of \:  cube&  \sf\sqrt{3}l \\  \end{array}}

 \large \underline{ \underline {\red {\frak{Note::}}}}

 \sf{Here  \: we \:  use \:  to  \:  {\bf T. S. A.}, { \bf L. S. A.} ,{ \bf l}, { \bf b}  \: and  \: { \bf h}}

 \sf{to  \: represent \:  {\bf total  \: surface \:  area}, {\bf lateral  \: surface \: area}, {\bf length},}

 \sf{ {\bf breadth} \:  and   \: {\bf{height}}  \: respectively. }

Similar questions