Math, asked by allywelz5, 1 year ago

A curve has equation
3 3
x xy y    3 0
a) Find
dy
dx
in terms of
x
and
y.
b) Find any point where
y x 
.
c) There is one point apart from the origin at which the slope of this curve is 0. Locate this
point and determine whether it is a local maximum or local minimum.

Attachments:

Answers

Answered by sonuvuce
0

Answer:

(a) \frac{dy}{dx}=\frac{x^2-y}{x+y^2}

(b) (0,0), (\frac{3}{2},\frac{3}{2})

(c) The point is (\sqrt[3]{2}, \sqrt[3]{4}), it is a local minimum

Step-by-step explanation:

Given equation of the curve

x^3-3xy+y^3=0

Differentiation above w.r.t. x

3x^2-3(x\frac{dy}{dx}+y)-3y^2\frac{dy}{dx}=0

\implies \frac{dy}{dx}(-3x-3y^2)=-3x^2+3y

\implies \frac{dy}{dx}=\frac{3x^2-3y}{(3x+3y^2)}

\implies \frac{dy}{dx}=\frac{x^2-y}{x+y^2}

If y=x then

x^3-3x^2+x^3=0

\implies 2x^3-3x^2=0

\implies x^2(2x-3)=0

\implies x=0,\frac{3}{2}

The point where y=x  is (0,0), (\frac{3}{2},\frac{3}{2})

If the slope of the curve is zero then

\frac{dy}{dx}=0

\implies \frac{x^2-y}{x+y^2}=0

\implies x^2-y=0

\implies x^2=y

Putting the value of y in the original equation of the curve

x^3-3x\times x^2+(x^2)^3=0

\implies x^3-3x^3+x^6=0

\implies -2x^3+x^6=0

\implies x^3(-2+x^3)=0

\implies x=0, \sqrt[3]{2}

Therefore the other point is (\sqrt[3]{2}, \sqrt[3]{4})

if we taken any point left of the above point say(\sqrt[3]{2}-h, \sqrt[3]{4}-h) , the slope is

\frac{dy}{dx}=\frac{(\sqrt[3]{2}-h)^2-\sqrt[3]{4}-h}{\sqrt[3]{2}-h+(\sqrt[3]{4}-h)^2}

\frac{dy}{dx}=\frac{\sqrt[3]{4}-2h\sqrt[3]{2}-\sqrt[3]{4}-h}{\sqrt[3]{2}-h+\sqrt[3]{16}-2h\sqrt[3]{4}}   (ignoring the higher power of h)

The above value is negative

if we take a point just right of the point  (\sqrt[3]{2}, \sqrt[3]{4}) and replace h by -h, the value will be positive

Thus the slope changes from negative to positive, therefore there is a local minima at the point.

Hope this helps.

Similar questions