Math, asked by twinklesugathan1709, 1 year ago

A cylindrical container base radius 8cm and height 42 cm find the curved surface area and total surface area of the cylinder

Answers

Answered by akanksha200433
10
your answer is here.
Attachments:
Answered by silentlover45
20

\large\underline\pink{Given:-}

  • A cylindrical container base radius 8cm and height 42cm.

\large\underline\pink{To find:-}

  • Fine the CSA and TSA of the cylinder ....?

\large\underline\pink{Solutions:-}

Curved surface area of Cylinder = 2πrh

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {8} \: \times \: {42}

\: \: \: \: \:  \leadsto \: \: {44} \: \times \: {8} \: \times \: {6}

\: \: \: \: \:  \leadsto \: \: {44} \: \times \: {42}

\: \: \: \: \:  \leadsto \: \: {2112} \: {cm}^{2}

Total surface area = 2πr(h + r)

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {8} \: {({42} \: + \: {8})}

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {8} \: \times \: {50}

\: \: \: \: \:  \leadsto \: \: \frac{{44} \: \times \: {400}}{7}

\: \: \: \: \:  \leadsto \: \: \frac{17600}{7}

\: \: \: \: \:  \leadsto \: \: {2514.28} \: {cm}^{2}

Hence, the CSA and TSA of the cylinder is 2112 cm² and 2514.28 cm²

\large\underline\pink{More \: Important:-}

  • Volume of cylinder ( Area of base × height ).

= (πr²) × h

= πr²h

  • Curved surface = ( Perimeter of base ) × height.

= (2πr) × h

= 2πrh

  • Total surface are = Area of circular ends + curved surface area.

= 2πr² + 2πrh

= 2πr(r + h)

Where, r = radius of the circular base of the cylinder.

h = height of cylinder.

Similar questions