Math, asked by Chulbulpandey3800, 6 months ago

a cylindrical container of radius 6cm and height 15cm is filled with ice cream.the whole ice cream is distributed among 10 children in equal cones having hemispherical tops . if the height of conical portion is 4 times the radius of base , then find the radius of ice cream cone.​

Answers

Answered by Anonymous
70

Given

a cylindrical container of radius 6cm and height 15cm is filled with ice cream.the whole ice cream is distributed among 10 children in equal cones having hemispherical tops .

We Find

Radius of ice cream cone

According to the question

Let \:  the \:  radius \:  of  \: the \:  base \:  of \:  the  \: conical  \: portion \:  be \:  r  \: cm \\  \\ </p><p></p><p></p><p>Then, \:  height \:  of  \: the \:  conical \:  portion  \: = \: 4r \:  cm \\  \\ </p><p></p><p></p><p>Volume \:  of \:  cone \:  with \:  hemispherical \:  top  \: = \:  volume  \: of  \: the \:  cone \:  +  \: volume  \: of  \: the \:   hemispherical  \: top \\  \\ </p><p></p><p>                                                 =(31πr² ×4r+32πr³)cm³ \\  \\ </p><p></p><p></p><p>                                                                  =(36πr³)cm³ \\  \\ </p><p></p><p></p><p>                                                                  =(2πr³)cm³ \\  \\ </p><p></p><p></p><p>Volume \:  of  \: 10  \: cones  \: with  \: hemispherical \:  tops  \: = \: (10×2πr³)cm³ \\ \\ =20πr³cm³\\  \\ </p><p></p><p></p><p>volume  \: of \:  the \:  cylindrical \:  container \:  = \: (π×62)cm³=540πcm³ \\  \\ </p><p></p><p></p><p>Clearly \: </p><p> \: volume  \: of  \: 10  \: cones \:  with  \: hemispherical  \: tops  \: =  \: volume \:  of  \: the \:  cylindrical \:  container \\  \\ </p><p></p><p></p><p>⇒20πr³ = 540π</p><p></p><p>⇒=3cm</p><p></p><p>

Attachments:
Answered by Anonymous
119

\pink\bigstarQUESTION:-

A cylindrical container of radius 6cm and height 15cm is filled with ice cream.the whole ice cream is distributed among 10 children in equal cones having hemispherical tops . if the height of conical portion is 4 times the radius of base , then find the radius of ice cream cone.

⠀⠀⠀

\green\bigstarFORMULA USED:-

 \longrightarrow \sf volume _{cylinder} =  \pi {r}^{2} h

 \sf \longrightarrow volume _{cone} =  \dfrac{1}{3}  \pi {r}^{2} h

 \sf \longrightarrow volume_{hemisphere} =  \dfrac{2}{3}  \pi {r}^{3}

⠀⠀⠀

\blue\bigstarSOLUTION:-

•Radius of the cylinder,r=6cm

•Height of the cylinder,h=15cm

⠀⠀⠀

•Volume of ice-cream in the cylinder

 \sf  \implies( \pi {r}^{2} h) = ( \pi \times 6 \times 6 \times 15){cm}^{3}

 \implies \sf(540 \pi)cm^{3}

•Volume of ice-cream given to each child

 \implies \sf \bigg( \dfrac{540 \pi}{10}\bigg)cm^{3}  =( 54 \pi)cm^{3}

 \therefore  \sf volume \: of \: each \: cone = (54 \pi)cm^{3}

⠀⠀⠀

•Let the radius of the cone be r cm .

•Then the height of the conical part =(4r) cm

⠀⠀⠀

•Volume of the conical portion

 \sf \implies \bigg( \dfrac{1}{3}  \pi {r}^{2}  \times 4r \bigg)cm^{3}  =  \bigg( \dfrac{4}{3}  \pi {r}^{3}  \bigg)

 \sf  volume \: of \: hemispherical \: portion =  \bigg( \dfrac{2}{3}  \pi {r}^{3}  \bigg)

•Volume of each ice-cream cone =(volume of conical part +Volume of hemispherical part)

 \sf =  \bigg( \dfrac{4}{3}  \pi {r}^{3}  +  \dfrac{2}{3}  \pi {r}^{3}  \bigg)cm^{3}

 \sf = (2 \pi {r}^{3} ){cm}^{3}

 \therefore \sf2 \pi {r}^{3}  = 54 \pi

 \implies \sf r^{3}  = 27 =  {3}^{3}

 \implies  \sf r = 3

⠀⠀⠀

Hence,the radius of the ice-cream cone =3 cm

Attachments:
Similar questions