Math, asked by yogibalan189, 11 months ago

A cylindrical glass with diameter 20cm has water to a height of 9cm. A small cylindrical metal of radius 5cm and height 4cm is immersed it completely. calculate the raise of the water in the glass ?

Answers

Answered by BrainlyConqueror0901
81

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Rise\:in\:height=1\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline\bold{Given : }} \\ \tt{ : \implies  Radius \: of \: cylinder( r_{1} )=10 \: cm} \\  \\ \tt{ : \implies  Height \: of \: cylinder( h_{2})= 9 \: cm} \\  \\  \tt{ : \implies  Radius \: of \: cylinder( r_{2})  = 5 \: cm} \\  \\ \tt{ : \implies Height \: of \: cylinder ( h_{2})  = 4 \: cm} \\  \\ \red{ \underline\bold{To \: Find : }} \\  \tt{:  \implies Raise \: of \: water \: in \: glass = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Volume \: of \: cylinder  \: glass= \pi { r_{1} }^{2} h_{1} } \\  \\  \tt{:  \implies Volume \: of \: cylinder \: glass =3.14 \times  {10}^{2}  \times 9} \\  \\   \green{\tt{:  \implies Volume \: of \: cylinder \: glass =2826 {cm}^{3} }} \\  \\  \bold{As \: we \: know \: that} \\  \tt{:  \implies Volume \: of \: cylindrical \: metal = \pi { r_{2} }^{2}  h_{2} } \\  \\ \tt{:  \implies Volume \: of \: cylindrical \: metal =3.14 \times  {5}^{2} \times  4 } \\  \\  \green{\tt{:  \implies Volume \: of \: cylindrical \: metal =  314 {cm}^{3} }} \\  \\  \bold{Total \: Volume \:after \: adding \: cylindrical \: metal} \\  \tt{:   \implies New \: volume = \pi { r_{1} }^{2} h_{3}} \\  \\  \tt{:  \implies 2826 + 314 = 3.14 \times 10 \times 10 \times  h_{3}} \\  \\  \tt{: \implies  h_{3} =  \frac{3140}{314}}  \\  \\  \green{\tt{: \implies  h_{3} =10 \: cm }} \\  \\  \bold{Rise \: height : } \\  \tt{:  \implies Height \: rise = 10 - 9} \\  \\  \green{\tt{:  \implies Height \: rise =1 \: cm }}


Anonymous: Awesome
BrainlyConqueror0901: thnx igneousangel
AbhijithPrakash: Awesome!!
BrainlyConqueror0901: thnx abhijith bro
BrainIyMSDhoni: Great :)
Brainly100: As usual Mind blowing ^^
BrainlyConqueror0901: thnx BrainlyMsDhoni
BrainlyConqueror0901: thnx Brainly100
Answered by EliteSoul
108

Answer:

\large{\underline{\boxed{\mathfrak\blue{Height \: of \: water \: rises = 1 \: cm }}}}

Given:-

  • Diameter of cylindrical glass(d1)=20 cm
  • Height of cylindrical glass (h1) = 9 cm
  • Radius of cylindrical metal (r2) = 5 cm
  • Height of cylindrical metal (h2) = 4 cm

To find:-

  • Height of water rise in the glass if cylindrical metal is immersed into cylindrical glass = ?

\rm We \: know, \\\\\star \: {\boxed{\rm{Volume \: of \: cylinder = \pi r^2 h }}}

\rm At \: first, \\\\\Rightarrow\rm Volume \: of \: cylindrical \: glass = \pi (\dfrac{20}{2})^2 \times 9 \\\\\Rightarrow\rm Volume \:of \:cylindrical\: glass = 3.14 \times (10)^2 \times 9 \\\\\Rightarrow\rm Volume\: of \:cylindrical\: glass = 3.14 \times 100 \times 9 \\\\\Rightarrow\rm Volume\: of\: cylindrical\: glass ={\boxed{\rm{2826 \: cm^3 }}}

\rm Secondly, \\\\\Rightarrow\rm Volume\: of\: cylindrical \:metal = 3.14 \times (5)^2 \times 4 \\\\\Rightarrow\rm Volume \:of\: the\: cylindrical metal = 3.14 \times 25 \times 4 \\\\\Rightarrow\rm Volume \:of\: the \:cylindrical\: metal ={\boxed{\rm{314 \: cm^3}}}

\rule{200}{1}

\rm New \:volume \: of  cylindrical \: glass:- \\\\\Rightarrow\rm New \: volume = 3.14 \times (10)^2 \times h_3 \\\\\Rightarrow\rm \: {Volume}_{cylindrical \: glass} + {Volume}_{cylindrical \: metal} = 314h \\\\\Rightarrow\rm 2826 + 314 = 314h \\\\\Rightarrow\rm 3140 = 314h \\\\\Rightarrow\rm h_3 = 3140/314 \\\\\Rightarrow\rm h_3 ={\boxed{\rm{10\: cm }}}

\because\rm Old\:height \: of \: cylindrical \: glass = 9 \: cm

\rm And, New \: height \: of \: cylindrical \: glass = 10 \: cm

\therefore\rm Height \: rises = (10 -9)\: cm \\\\\therefore\rm Height \: rises = {\boxed{\rm{1\: cm }}}

{\underline{\underline{\therefore{\text{Height \: rises \: 1 \: cm \: in \: the \: glass }}}}}


BrainlyConqueror0901: well explained bro keep helping : )
Anonymous: Amazing
AbhijithPrakash: Awesome!!
BrainIyMSDhoni: Great :)
Brainly100: Marvellous ^^
Similar questions