Math, asked by rajeshwarsingh844127, 18 days ago

A cylindrical tank has a capacity of 3080cm ³. if it's depth is 20cm ,find its diameter.


plz give me answer.​

Answers

Answered by nudha57
1

Answer:

h=20 cm

volume of cylinder = capacity of tank

πr^2h = 3080

r^2 = 3080

(22×20/7)×r^2 = 3080

r^2 = 3080×7/22×20

r^2 = 7×7

r = cm

hymns the diameter of the tank = 2r = 2×7 = 14 cm

Answered by Anonymous
25

Answer:

Diagram :

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{7\ cm}}\put(9,17.5){\sf{20\ cm}}\end{picture}

The diagram of cylinder is given above. See this latex diagram on website Brainly.in.

\begin{gathered}\end{gathered}

Given :

  • → A cylindrical tank has a capacity of 3080 cm³.
  • → Depth of cylinder tank is 20 cm.

\begin{gathered}\end{gathered}

To Find :

  • → Radius of cylindrical tank
  • → Diameter of cylindrical tank

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\underline{\boxed{\sf{V =\pi{r}^{2}h}}}}}

{\longrightarrow{\underline{\boxed{\sf{D = 2r}}}}}

  • → V = Volume
  • → π = 22/7
  • → r = radius
  • → h = height
  • → D = Diameter

\begin{gathered}\end{gathered}

Solution :

Finding the radius of cylindrical tank by substituting the values in formula :

{\longrightarrow{\sf{V =\pi{r}^{2}h}}}

{\longrightarrow{\sf{3080= \dfrac{22}{7} \times  {r}^{2} \times 20}}}

{\longrightarrow{\sf{3080= \dfrac{22 \times 20}{7} \times  {r}^{2}}}}

{\longrightarrow{\sf{3080= \dfrac{440}{7} \times  {r}^{2}}}}

{\longrightarrow{\sf{{r}^{2} = 3080 \times  \dfrac{7}{440} }}}

{\longrightarrow{\sf{{r}^{2} = \cancel{3080}\times  \dfrac{7}{\cancel{440}}}}}

{\longrightarrow{\sf{{r}^{2} = 7 \times 7}}}

{\longrightarrow{\sf{{r}^{2} =49}}}

{\longrightarrow{\sf{r= \sqrt{49} }}}

{\longrightarrow{\sf{r= \sqrt{7 \times 7} }}}

{\longrightarrow{\sf{r=7 \: cm}}}

{\bigstar{\underline{\boxed{\sf{\red{Radius = 7  \: cm}}}}}}

Hence, the radius of cylindrical tank is 7 cm.

\rule{300}{1.5}

Now, finding the diameter of cylinder by substituting the values in formula :

{\longrightarrow{\sf{D = 2r}}}

{\longrightarrow{\sf{D = 2 \times 7}}}

{\longrightarrow{\sf{D = 14 \: cm}}}

{\bigstar{\underline{\boxed{\sf{\red{Diameter = 14  \: cm}}}}}}

Hence, the diameter of cylindrical tank is 14 cm.

\begin{gathered}\end{gathered}

Learn More :

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

\rule{220pt}{3pt}

Similar questions