Math, asked by anshu1815, 6 months ago

a cylindrical tank has a capacity of 5632 m square to metre square point if the diameter of its base is 16 metre find its depth​

Answers

Answered by Anonymous
22

Answer:

Answer:

Given:-

Diameter of cylinder tank = 16m

Volume of cylinder tank = 5632 m²

Find:-

Depth of cylinder tank???

Solution:-

Radius = Diameter /2

Radius = 16/2 = 8

So, Radius of cylinder tank is 8m

We know that ⤵

{ \boxed{ \sf{Volume = \pi \:  {r}^{2} h}}}

{ \to{5632 =  \frac{22}{7} \times  {8}^{2}   \times h}}

{ \to{5632 =  \frac{22}{7}  \times 64 \times h}}

{  \to{ \frac{5632}{64} =  \frac{22}{7} \times h  }}

{ \to{88 =  \frac{22}{7}  \times h}}

{ \to{88 \times  \frac{7}{22} = h }}

 \to \: h =  \frac{616}{22}

 \to{h = 28}

Therefore, height (depth) of cylinder is 28m

Step-by-step explanation:

Verification:-

Volume of cylinder = πr²h

5632 = 22/7 × 8² × 28

5632 = 22/7 × 64 × 28

5632 = 22/7 × 1792

5632 = 39424/7

5632 = 5634

Hence, proved ✔


pandaXop: Nice !
Answered by TheProphet
28

S O L U T I O N :

\underline{\bf{Given\::}}

  • Capacity of a cylindrical tank, (V) = 5632 m²
  • Diameter of it's base, (D) = 16 m

\underline{\bf{Explanation\::}}

As we know that formula of the volume of cylinder;

\boxed{\bf{Volume = \pi r^{2} h \:\:(cubic\:unit)}}

A/q

  • Radius = Diameter/2
  • Radius = 16/2
  • Radius = 8 m

Now,

\longrightarrow\tt{Volume\:_{(cylindrical\:tank)}= \pi r^{2} h}

\longrightarrow\tt{5632= 22/7 \times (8)^{2} \times  h}

\longrightarrow\tt{5632= 22/7 \times 8 \times 8 \times  h}

\longrightarrow\tt{5632= 22/7 \times 64 \times  h}

\longrightarrow\tt{\cancel{5632}= 22/7 \times \cancel{64} \times  h}

\longrightarrow\tt{88= 22/7  \times  h}

\longrightarrow\tt{88= 22h/7}

\longrightarrow\tt{88 \times 7 = 22 h}

\longrightarrow\tt{616 = 22 h}

\longrightarrow\tt{h = \cancel{616/22}}

\longrightarrow\bf{h = 28\:m}

Thus,

The depth of the cylindrical tank will be 28 m .

Similar questions