Math, asked by manahilshaukat2, 4 months ago

A cylindrical tin of height h cm and radius r cm, has surface area, including
its top and bottom, Acm2.
(i) Write down an expression for A in terms of r, h and π.
(ii) A tin of height 6cm has surface area 54πcm2

. What is the radius of the tin?
(iii) Another tin has the same diameter as height. Its surface area is 150πcm2.
What is its radius?

Answers

Answered by twishasadaria0
0

Answer:

Question:−

A cylindrical tin of height h cm and radius r cm, has surface area, including its top and bottom, A cm².

\mathcal{\huge{\underline{\underline{\red{Solution:-}}}}}

Solution:−

height of cylinder = h cm

radius of cylinder = r cm

\tt\Huge\pink{therefore:-}therefore:−

\tt\Huge\blue{area =}area= \huge{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{πr²h cm² }}}}

πr²h cm²

{\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow}→→→→→→→→→→→→→→→→

height of tin = 6 cm

surface area = 54π cm²

\mathcal{\huge{\underline{\underline{\red{To\:find:-}}}}}

Tofind:−

\large\tt{radius\:of\:the\:tin}radiusofthetin

basic information ➡️

area of tin = \huge{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{πr²h}}}}

πr²h

∴ 54π = πr²6

→ r² = 9

→ r = √9

→ r = 3

∴ \mathcal{\huge{\fbox{\fbox{\red{radius=3}}}}}

radius=3

{\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow}→→→→→→→→→→→→→→→→

\mathcal{\huge{\underline{\underline{\red{Given\:that:-}}}}}

Giventhat:−

\rm\underline\green{height\:of\:tin\:is\: radius}

heightoftinisradius

\mathcal{\huge{\fbox{\fbox{\red{r = h }}}}}

r = h

surface area = 150π cm²

\mathcal{\huge{\underline{\underline{\red{To\:find}}}}}

Tofind

→ radius of tin .

\mathcal{\huge{\underline{\underline{\red{Solution:-}}}}}

Solution:−

surface area = πr²h

\blue{\tt{150π = πr²2r}}150π=πr²2r

\blue{\tt{150 = 2r³}}150=2r³

\blue{\tt{r³ = 75}}r³=75

\blue{\tt{r = \sqrt[3]{ 75}}}r=

3

75

Step-by-step explanation:

hope it helps....

Answered by Anonymous
0

Answer:

wethbcxxdguijnxzawetuiknxzawethjoonvf

Similar questions