Chemistry, asked by StrongGirl, 9 months ago

A diatomic gas expands adiabatically so that final density is 32 times the initial density. final pressure becomes N times of initial pressure. the value of N is?
128
1/32
32
1/128​

Answers

Answered by bansari90
2

Answer:

Volume of the gas v=

density

mass

=

ρ

m

and using (PV)

r

= constant,

P

P

=

V

V

=(

)

r

=(

ρ

ρ

)

r

Or 128=(32)

r

∴r=log

32

128

∴r=

5

7

=1.4

I hope it helps you

please mark me as a brainlist

Answered by amansharma264
15

ANSWER.

The value of N is = 128.

EXPLANATION.

 \sf \to \: a \: diatomic \: gas \: expands \: adiabatically \\  \\   \sf \to \: final \: density \: is \: 32times \: the \: initial \: density \\  \\  \sf \to \: final \: pressure \: becomes \: n \: times \: of \: initial \: pressure.

 \sf \to \: for \: diatomic \: gas \:  =  \gamma \:  =  \dfrac{5}{2}  \\  \\  \sf \to \: as \: we \: know \: that \\  \\  \sf \to \:  p_{1} v_{1} {}^{ \gamma}   =  p_{2} v_{2} {}^{ \gamma}  = constant \\  \\  \sf \to \:  \frac{ p_{1}}{ p_{2} }   = ( \frac{ v_{1} }{ v_{2} } ) {}^{ \gamma}

 \sf \to \: as \: we \: know \: that \\  \\  \sf \to \: density \:  =  \dfrac{mass}{volume} \\  \\  \sf \to \:  d_{1} \:  =  \dfrac{m}{ v_{1} } \: ......(1) \\  \\  \sf \to \:  d_{2} =  \dfrac{m}{ v_{2} }  .....(2) \\  \\  \sf  \to \: from \: equation \: (1) \: and \:(2) \: we \: get

 \sf \to \:  \dfrac{ d_{1}}{  d_{2} }  =  \dfrac{ \dfrac{ \cancel{m}}{ v_{1} } }{ \dfrac{ \cancel{m}}{ v_{2} } }  \\  \\  \sf \to \:  \dfrac{ d_{1} }{ d_{2} }  =  \dfrac{ v_{2} }{ v_{1} }  \\  \\  \sf \to \:  \dfrac{ v_{1} }{ v_{2} }  =  \dfrac{ d_{2} }{ d_{1} }  = 32 \:  \: (given)

 \sf \to \:  \dfrac{ p_{2} }{ p_{1} }  = (32) {}^{ \dfrac{7}{5} }  \\  \\  \sf \to \:  \frac{ p_{2} }{ p_{1}}  = (2) {}^{ \cancel{5 \times  }\dfrac{7}{ \cancel{5} }}  \\  \\  \sf \to \:  \frac{ p_{2} }{ p_{1} }   = (2) {}^{7} = 128 \\  \\  \sf \to \:  p_{2} = 128 \times  p_{1} \\  \\  \sf \to \: value \: of \: n \:  = 128

Similar questions