(a) difference between mass and weight (b) find the mass of an object on the moon having weight on the earth as 98 newton
Answers
Answer:
complete explanation
MARK ME AS BRAINLIEST
Explanation:
In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities. In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), whereas weight is the force exerted on an object by gravity.[1] In other words, an object with a mass of 1.0 kilogram weighs approximately 9.81 newtons on the surface of the Earth, which is its mass multiplied by the gravitational field strength. The object's weight is less on Mars, where gravity is weaker, and more on Saturn, and very small in space when far from any significant source of gravity, but it always has the same mass.
Objects on the surface of the Earth have weight, although sometimes the weight is difficult to measure. An example is a small object floating in water, which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the "weightless object" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.
A better scientific definition of mass is its description as being a measure of inertia, which is the tendency of an object to not change its current state of motion (to remain at constant velocity) unless acted on by an external unbalanced force. Gravitational "weight" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight.[2] This force can be added to by any other kind of force.
While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant, as long as no energy or matter is added to the object.[3] For example, although a satellite in orbit (essentially a free-fall) is "weightless", it still retains its mass and inertia. Accordingly, even in orbit, an astronaut trying to accelerate the satellite in any direction is still required to exert force, and needs to exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.
Answer:
mass is the matter contained in body whereas weight is the force. 1.63kg